История теоремы Пифагора
Биография греческого ученого, происхождение теоремы Пифагора, способы ее доказательства разными народами (древнекитайский, индусский, Евклидом) и значение для современной геометрии. Особенности соотношения размера сторон треугольника и его гипотенузы.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 21.01.2015 |
Размер файла | 97,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Содержание
Введение
1. Биография Пифагора
2. Из истории теоремы Пифагора
3. Шесть способов доказательства теоремы Пифагора
3.1 Древнекитайское доказательство
3.2 Доказательство Дж. Гардфилда (1882 г.)
3.3 Старейшее доказательство (содержится в одном из произведений Бхаскары)
3.4 Доказательство простейшее
3.5 Доказательство древних индусов
3.6 Доказательство Евклида
Заключение
Литература
теорема пифагор треугольник гипотенуза
Введение
Теорема Пифагора издавна широко применялась в разных областях науки, техники и практической жизни. О ней писали в своих произведениях римский архитектор и инженер Витрувий, греческий писатель-моралист Плутарх, греческий учёный 3 в. Диоген Лаэрций, математик V в. Прокл и многие другие. Легенда о том, что в честь своего открытия Пифагор принёс в жертву быка или, как рассказывают другие, сто быков, послужила поводом для юмора в рассказах писателей и в стихах поэтов. Поэт Генрих Гейне(1797-1856), известный своими антирелигиозными взглядами и язвительными насмешками над суевериями, в одном из своих произведений высмеивает «учение» о переселении душ следующим образом: «Кто знает! Кто знает! Душа Пифагора поселилась, быть может, бедняку - кандидата, не сумевшего доказать теоремы Пифагора и поэтому провалившегося на экзамене, тогда как в его экзаменаторах обитают души тех самых быков, которых некогда Пифагор принес в жертву бессмертным богам, обрадованный открытием своей теоремы». История Пифагоровой теоремы начинается задолго до Пифагора. На протяжении веков были даны многочисленные разные доказательства теоремы Пифагора.
1. Биография Пифагора
Пифагор Самосский - великий греческий учёный. Его имя знакомо каждому школьнику. Если попросят назвать одного древнего математика, то абсолютное большинство назовёт Пифагора. Его известность связана с названием теоремы Пифагора. Хотя сейчас уже мы знаем, что эта теорема была известна в древнем Вавилоне за 1200 лет до Пифагора, а в Египте за 2000 лет до него был известен прямоугольный треугольник со сторонами 3, 4, 5, мы по-прежнему называем её по имени этого древнего учёного.
Про жизнь Пифагора достоверно почти ничего не известно, но с его именем связано большое количество легенд.
Пифагор родился в 570 году до н. э на острове Самос. Отцом Пифагора был Мнесарх - резчик по драгоценным камням. Мнесарх, по словам Апулея, «славился среди мастеров своим искусством вырезать геммы», но стяжал скорее славу, чем богатство. Имя матери Пифагора не сохранилось.
Пифагор имел красивую внешность, носил длинную бороду, а на голове золотую диадему. Пифагор - это не имя, а прозвище, которое философ получил за то, что всегда говорил верно и убедительно, как греческий оракул. (Пифагор - "убеждающий речью".)
Среди учителей юного Пифагора были старец Гермодамант и Ферекид Сиросский (хотя и нет твердой уверенности в том, что именно Гермодамант и Ферекид были первыми учителями Пифагора). Целые дни проводил юный Пифагор у ног старца Гермодаманта, внимая мелодии кифары и гекзаметрам Гомера. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера.
Ферекид же был философом и считался основателем италийской школы философии. Таким образом, если Гермодамант ввел юного Пифагора в круг муз, то Ферекид обратил его ум к логосу. Ферекид направил взор Пифагора к природе и в ней одной советовал видеть своего первого и главного учителя.
Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым - Фалесом. Фалес посоветовал ему отправиться за знаниями в Египет, что Пифагор и сделал.
В 550 году до н. э Пифагор принимает решение и отправляется в Египет. Итак, перед Пифагором открывается неизвестная страна и неведомая культура. Многое поражало и удивляло Пифагора в этой стране, и после некоторых наблюдений за жизнью египтян Пифагор понял, что путь к знаниям, охраняемым кастой жрецов, лежит через религию.
Вместе с египетскими мальчиками сел за известняковые пластинки и он, возмужалый Эллин с черной курчавой бородой. Но в отличие от своих меньших сотоварищей уши бородатого Эллина были не на спине, да и голова стояла на месте. Очень скоро Пифагор далеко обогнал своих однокашников. Но школа писцов была лишь первой ступенью на пути к тайному знанию.
После одиннадцати лет обучения в Египте Пифагор отправляется на родину, где по пути попадает в Вавилонский плен. Там он знакомится с вавилонской наукой, которая была более развита, чем египетская. Вавилоняне умели решать линейные, квадратные и некоторые виды кубических уравнений. Они успешно применяли теорему Пифагора более чем за 1000 лет до Пифагора. Сбежав из плена, он не смог долго оставаться на родине из-за царившей там атмосферы насилия и тирании. Он решил переселиться в Кротон (греческая колония на севере Италии).
Именно в Кротоне начинается самый славный период в жизни Пифагора. Там он учредил нечто вроде религиозно-этического братства или тайного монашеского ордена, члены которого обязывались вести так называемый пифагорейский образ жизни.
2. Из истории теоремы Пифагора
В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что именно Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду.
Как мы видим, история математики почти не сохранила достоверных конкретных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Многим известен сонет немецкого писателя-романиста Шамиссо:
Пребудет вечной истина, как скоро
Ее познает слабый человек!
И ныне теорема Пифагора
Верна, как и в его далекий век.
Обильно было жертвоприношенье
Богам от Пифагора. Сто быков
Он отдал на закланье и сожженье
За света луч, пришедший с облаков.
Поэтому всегда с тех самых пор,
Чуть истина рождается на свет,
Быки ревут, ее почуя, вслед.
Они не в силах свету помешать,
А могут лишь, закрыв глаза, дрожать
От страха, что вселил в них Пифагор.
Исторический обзор теоремы Пифагора начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чупей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:
"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4" .
Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого.
Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.
Кантор (крупнейший немецкий историк математики) считает, что равенство 3 І + 4 І = 5І было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея).
По мнению Кантора, гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
Несколько больше было известно о теореме Пифагора вавилонянам. В одном тексте, относимом ко времени Хаммураби, т.е. к 2000 году до нашей эры, приводится приближенное вычисление гипотенузы прямоугольного треугольника; отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.
Геометрия у индусов была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 8 века до нашей эры. Наряду с чисто ритуальными предписаниями, существуют и сочинения геометрически теологического характера, называемые Сульвасутры. В этих сочинениях, относящихся к 4 или 5 веку до нашей эры, мы встречаемся с построением прямого угла при помощи треугольника со сторонами 15, 36, 39.
В средние века теорема Пифагора определяла границу, если не наибольших возможных, то, по крайней мере, хороших математических знаний. Характерный чертеж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора или человека в цилиндре, в те времена нередко употреблялся как символ математики.
В заключение приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков.
Евклида эта теорема гласит (дословный перевод):
"В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".
Латинский перевод арабского текста Аннариции (около 900 года до нашей эры), сделанный Герхардом Кремонским (12 век) гласит (в переводе):
«Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол»
В Geometry Culmonensis (около 1400года) теорема читается так (в переводе):
“Итак, площадь квадрата, измеренного по длиной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу”
В русском переводе евклидовых «Начал», теорема Пифагора изложена так: «В прямоугольном треугольнике квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».
Как видим, в разных странах и разных языках существуют различные варианты формулировки знакомой нам теоремы. Созданные в разное время и в разных языках, они отражают суть одной математической закономерности, доказательство которой также имеет несколько вариантов
3. Шесть способов доказательства теоремы Пифагора
3.1 Древнекитайское доказательство
На древнекитайском чертеже четыре равных прямоугольных треугольника с катетами a , b и гипотенузой с уложены так, что их внешний контур образует квадрат со стороной a + b , а внутренний - квадрат со стороной с , построенный на гипотенузе
a2 + 2ab +b2 = c2 + 2ab
a2 +b2 = c2
3.2 Доказательство Дж. Гардфилда (1882 г.)
Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого.
Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту
C другой стороны, площадь трапеции равна сумме площадей полученных треугольников
Приравнивая данные выражения, получаем:
3.3 Старейшее доказательство (содержится в одном из произведений Бхаскары)
Пусть АВСD квадрат, сторона которого равна гипотенузе прямоугольного треугольника АВЕ (АВ = с, ВЕ = а, АЕ = b);
3.4 Доказательство простейшее
Это доказательство получается в простейшем случае равнобедренного прямоугольного треугольника.
Вероятно, с него и начиналась теорема.
В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.
Например, для треугольника АВС: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по два. Теорема доказана.
3.5 Доказательство древних индусов
Квадрат со стороной (a+b), можно разбить на части либо как на рисунке а), либо как на рисунке b).
Ясно, что части 1,2,3,4 на обоих рисунках одинаковы. А если от равных (площадей) отнять равные, то и останутся равные, т.е.
Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали лишь одним словом: «Смотри!»
с2 = а2 + b 2
3.6 Доказательство Евклида
В течение двух тысячелетий наиболее распространенным было доказательство теоремы Пифагора, придуманное Евклидом. Оно помещено в его знаменитой книге «Начала».
Евклид опускал высоту BН из вершины прямого угла на гипотенузу и доказывал, что её продолжение делит достроенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах.
Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum- ослиный мост, или elefuga- бегство "убогих", так как некоторые "убогие" ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому "ослами", были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также "ветряной мельницей", составляли стихи вроде "Пифагоровы штаны на все стороны равны", рисовали карикатуры.
Заключение
Теорема Пифагора настолько известна, что трудно представить себе человека, не слышавшего о ней. Мы изучили ряд исторических и математических источников, в том числе информацию в Интернете, и увидели, что теорема Пифагора интересна не только своей историей, но и тем, что она занимает важное место в жизни и науке. Об этом свидетельствуют приведённые нами в данной работе различные трактовки текста этой теоремы и пути её доказательств.
Итак, теорема Пифагора - одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни смотри на прямоугольный треугольник, никак не увидишь, что между его сторонами есть простое соотношение. Поэтому для её доказательства часто используют наглядность.
Заслуга же Пифагора состояла в том, что он дал полноценное научное доказательство этой теоремы.
Интересна личность самого учёного, память о котором неслучайно сохранила эта теорема. Пифагор - замечательный оратор, учитель и воспитатель, организатор своей школы, ориентированной на гармонию музыки и чисел, добра и справедливости, на знания и здоровый образ жизни. Он вполне может служить примером для нас, далёких потомков.
Литература
1. Г.И. Глейзер История математики в школе VII - VIII классы, пособие для учителей, - М: Просвещение 1982г.
2. Войтикова Н.В. «Теорема Пифагора» курсовая работа, Анжеро-Судженск, 1999г.
3. В. Литцман .Теорема Пифагора, М. 1960.
4. А.В. Волошинов «Пифагор» М. 1993.
5. Газета «Математика» 17/1996.
Размещено на Allbest.ru
...Подобные документы
Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.
презентация [376,2 K], добавлен 28.02.2012Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.
презентация [309,4 K], добавлен 17.11.2011Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.
презентация [11,6 M], добавлен 04.04.2019Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.
презентация [257,4 K], добавлен 05.12.2010Жизненный путь Пифагора, его путешествия и загадочная смерть. Заслуги Пифагора в арифметике, геометрии, музыке и астрономии. Древняя и современная формулировки теоремы Пифагора. Тригонометрическое доказательство и некоторые применения этой теоремы.
презентация [571,0 K], добавлен 13.12.2011История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.
презентация [3,6 M], добавлен 21.10.2011Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.
презентация [174,3 K], добавлен 18.12.2012Геометрическая и алгебраическая формулировка теоремы Пифагора. Многочисленность ее доказательств: через подобные треугольники, методом площадей, через равнодополняемость, при помощи дифференциальных уравнений. Доказательства Евклида и Леонардо да Винчи.
презентация [378,7 K], добавлен 15.10.2013Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
творческая работа [64,8 K], добавлен 20.05.2009Страницы биографии древнегреческого философа и математика Пифагора. Теорема Пифагора: основные формулировки и методы доказательства. Обратная теорема Пифагора. Примеры задач на применение теоремы Пифагора. "Пифагоровы штаны" и "тройка", "дерево Пифагора".
научная работа [858,3 K], добавлен 29.03.2011Биография и достижения великого ученого, творца математической школы древней Греции – Пифагора. Пифагорейское учение о натуральном числе как основе мироздания. Использование числовых отношений в геометрических построениях. Формулировка теоремы Пифагора.
реферат [29,6 K], добавлен 07.01.2012Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
доклад [26,6 K], добавлен 17.10.2009Биографические сведения о жизни греческого философа и математика Пифагора Самосского. Возникновение на юге Италии "Пифагорейской школы". Доказательство основной геометрической теоремы методом разложения математиком ан-Найризи и астрономом Перигэлом.
презентация [1,6 M], добавлен 01.02.2012Свойства и численное значение площади геометрической фигуры. Вычисление площади квадрата, прямоугольника, трапеции, и треугольника. Измерение отрезков. Значение и область применения теоремы Пифагора. Алгебраическое и геометрическое доказательства Евклида.
презентация [267,8 K], добавлен 04.09.2014Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
творческая работа [17,4 K], добавлен 25.06.2009Образ Пифагора Самосского, биография ученого-мыслителя в контексте античной культуры. Основные идеи пифагорейского учения в арифметике, геометрии, философии, космологии, музыке, их влияние на зарождение и развитие европейской науки от античности до XX в.
презентация [134,1 K], добавлен 28.11.2013Базовые основы системы mn параметров, варианты их значений. Теоремы циклов для треугольников и прямоугольного треугольника. Тайна теоремы Пифагора, предистория ее рождения. Итерационные формулы и их использование. Дисперсия точек ожидаемой функции.
статья [241,5 K], добавлен 24.11.2011Краткая биографическая справка из жизни Пифагора. Сущность понятия "пифагоровы тройки", простые способы их формирования. Свойства троек, главные их следствия. Решение задачи на нахождение тангенса острого угла. Подсказки для выбора правильной "тройки".
презентация [498,2 K], добавлен 01.12.2012Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.
курсовая работа [629,3 K], добавлен 29.06.2013Особенности видов тетраэдров и теоремы о них, их доказательства и примеры решения задач. Сравнительная характеристика изложения темы "тетраэдр" в школьных учебниках. Тестирование уровня развития пространственного мышления у учеников средней школы.
дипломная работа [910,4 K], добавлен 19.06.2011