Характеристика, виды и методика расчета обыкновенных дифференциальных уравнений
Обыкновенное дифференциальное уравнение как тождество, связывающее между собой значения независимой переменной, функции и её производных. Методика вычисления задачи Коши. Характеристика основных типов уравнений, которые допускают понижение порядка.
Рубрика | Математика |
Предмет | Математика |
Вид | презентация |
Язык | русский |
Прислал(а) | Incognito |
Дата добавления | 05.02.2015 |
Размер файла | 109,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа [810,5 K], добавлен 24.11.2013Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [791,0 K], добавлен 12.06.2010Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.
курсовая работа [1,5 M], добавлен 15.06.2009Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат [183,1 K], добавлен 24.08.2015Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа [4,8 M], добавлен 29.04.2013Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.
курсовая работа [918,7 K], добавлен 06.12.2013Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.
курсовая работа [78,1 K], добавлен 12.06.2010Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа [380,9 K], добавлен 23.07.2012Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.
контрольная работа [320,8 K], добавлен 13.03.2013Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.
реферат [165,4 K], добавлен 24.08.2015Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.
дипломная работа [1,2 M], добавлен 16.12.2008Приведение к системе уравнений первого порядка. Разностное представление систем дифференциальных уравнений. Сеточные методы для нестационарных задач. Особенность краевых задач второго порядка. Разностные схемы для уравнений в частных производных.
реферат [308,6 K], добавлен 13.08.2009Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа [508,1 K], добавлен 16.12.2015Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа [138,9 K], добавлен 08.01.2016Система двух нелинейных обыкновенных дифференциальных уравнений, порождённая прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве. Аналитические свойства решения, наличие у системы четырёхпараметрических семейств решений.
реферат [104,0 K], добавлен 28.06.2009Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.
курсовая работа [673,6 K], добавлен 27.04.2011Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.
лекция [187,9 K], добавлен 17.12.2010Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.
курс лекций [871,5 K], добавлен 11.02.2012