История развития системы счисления

Зарождение счета в глубокой древности. Появление систем счисления. Исследование процесса формирования понятия натурального числа. Вавилонские клинописные обозначения числа. Создание счетных приборов. Осознание людьми бесконечности натурального ряда чисел.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 13.02.2015
Размер файла 20,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Зарождение счета в глубокой древности

Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века - палеолита. В течении сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом - собиранием её, где только это было возможно. Люди изготовляли орудия охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали своё существование, создавая произведения искусства, статуэтки и рисунки. Пока не произошёл переход от простого собирания пищи к активному её производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век, в неолит. Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия «много». Оно произошло, по всей вероятности, ещё тогда, когда человечество находилось на низшей ступени развития. В.В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисление Бобынин мыслит как создание системы, состоящей из двух представлений: единица и неопределенное множество. [1].

Так, например, племя ботокудов, жившее в Бразилии, выражало числа только словами «один» и «много». Появление элемента «два» объясняется выявлением возможности взять по одному предмету в каждую руку. На первоначальном этапе счёта человек связывал это понятие с понятием обеих рук, в которых находится по одному предмету в каждой. При выражении понятия «три» встретилось затруднение: у человека нет третьей руки; это затруднение было преодолено, когда человек догадался помещать третий предмет у своих ног. Таким образом, «три» характеризовалось поднятием обеих рук и указанием на ноги. Отсюда сравнительно характерно произошло выделение и понятие «четыре», так как с одной стороны, к этому побуждало сопоставление двух рук и двух ног, а с другой - возможность поместить по одному предмету у каждой ноги. На первой ступени развития счета человек еще отнюдь не пользовался наименованием чисел, а выражал их или у ног, или соответствующими телодвижениями или жестами. Дальнейшее развитие счета относится, вероятно, к той эпохе, когда человечество ознакомилось с некоторыми формами производства - охотой и рыболовством. Человеку пришлось изготавливать простейшие орудия для овладения этими производствами.

Кроме того, продвижение человека в холодные страны заставило его делать одежду и создавать орудия для обработки кожи. Мало-помалу сложилось первобытно-коммунистическое общество с соответствующим распределением пищи, одежды и орудия. Все эти обстоятельства вынудили человека так или иначе вести счет общего имущества, сил врага, с которым приходилось вступать в борьбу за овладение новыми территориями. Процесс счета уже не мог остановиться на четырех и должен был развиваться далее и далее. На этой ступени развития человек уже отказывается от необходимости брать пересчитываемые предметы в руку или класть к ногам. В математику входит первая абстракция, заключающаяся в том, что пересчитываемые предметы заменяются какими-либо другими однородными между собой предметами или знаками: камешками, узелками, ветками, зарубками. Операция производится по принципу взаимно-однозначного соответствия: каждому пересчитываемому предмету в соответствие один из предметов, выбранных в качестве орудия счета (то есть один камешек, один узелок на веревке и т.д.). Следы такого рода счета сохранились у многих народов и до настоящего времени. Иногда такие примитивные орудия счета (камешки, раковины, косточки) нанизывали на шнурок или палочку, чтобы не растерять. Это впоследствии привело к созданию более совершенных счётных приборов, сохранивших своё значение и до наших дней: русские счёты и сходный с ними китайский суан-пан.

2. Появление систем счисления

Переход человека к пальцевому счету привел к созданию нескольких различных систем счисления. Самой древней из пальцевых систем счисления считается пятеричная. Эта система, как полагают, зародилась и наибольшее распространение получила в Америке. Её создание относится к этой эпохе, когда человек считал по пальцам одной руки. Очевидно, при таком способе счета делался какой-нибудь всякий раз, когда заканчивался отсчет всех пальцев одной руки. До последнего времени у некоторых племен пятеричная система сохранилась еще в чистом виде (например, у жителей Полинезии и Меланезии). Дальнейшее развитие систем счисления пошло по двум путям. Племена, не остановившиеся на счете по пальцам на одной руке, перешли к счету по пальцам второй руки и далее - по пальцам ног. При этом часть племен остановилась на счете пальцев только на руках и этим положило основу для десятичной системы счисления, а другая часть племен, вероятно большая, распространила счет на пальцы ног и тем самым создало предпосылки на основание системы с основанием 20. Такая система получила распространение главным образом среди значительной части индейских племен Северной Америки и Туземных обитателей Центральной и Южной Америки, а так же в северной части Сибири и в Африке. Десятичная система счисления является преобладающей у народов Европы. Однако это не означает, что в Европе эта система всегда была единственной: некоторые народы перешли к десятичной системе уже в более поздние времена, а ранние пользовались другой системой. Естественной единицей высшего разряда при возникновении двадцатеричной системы явился «человек» как обладатель 20 пальцев. В этой системе 40 выражается как «два человека», 60 - «три человека» и т.д. Двадцатеричная система имеет большой недостаток: для её словесного выражения надо иметь 20 различных названий для основных чисел. Поэтому, когда у некоторых племен развилась десятичная система счисления, то и многие другие племена, употреблявшие двадцатеричную, постепенно отошли от нее, переняв десятичную. Как полагают, переходу от двадцатеричной системы к десятеричной способствовало и то, что с тех пор, как люди стали употреблять обувь, закрывавшую пальцы ног, возможность непосредственного счета двумя десятками утратилось. Двадцатеричная система в наше время в чистом воде не отмечена ни у одного народа; обычно она соединяется с десятичной или с пятеричной. Однако следы этой системы сохранились в называниях у некоторых, даже достигших высокого культурного развития народов. Так, например, у французов число 80 выражается словом quatre-vingts (четырежды двадцать), а 90 - словом quatre-vingt-dix (четырежды двадцатьт и десятьт), у грузин числа 40, 60 и 80 называются ормацы, сомацы и отхмацы, т.е. 2х20, 3х20 и 4х20 (где «оцы» означает 20, «ори» - 2, «сами» - 3, а «отхи» - 4). Числа 30, 50, 70 и 90 называются оцдаати, ормоцдаати, цамоцдаати и отхмоцдаати, т.е. 20+10, 2х20+10, 3х20+10 и 4х20+10. Некоторые племена в качестве счетного аппарата применяли не сами пальцы рук, а их суставы. В этом случае счет иногда развивался тоже достаточно продуктивно и оформлялся в стройные системы. Здесь процесс счета протекал таким образом: большой палец одной руки является счетчиком суставов остальных пальцев этой руки; т.к. на каждом из остальных четырех пальцев этой руки содержится по три сустава, то следующий за суставом выше единицей являлось число 12, что и послужило двенадцатеричной системой счисления. Этот процесс иногда не останавливался на двенадцати, а продолжался далее, причем каждый палец другой руки служил единицей высшего разряда, т.е. представлял собой 12, и после отсчета всех пальцев на второй руке создавалась новая единица высшего разряда 12х5, т.е. 60. Возможно, что такого рода счет способствовал созданию шестидесятеричной системы счисления, имевшей большое распространение в древнем Вавилоне и перешедшей позднее ко многим другим народам. Следы двенадцатеричной и шестнадцатеричной систем счисления сохранились и до нашего времени. Стоит вспомнить хотя бы счет часов в сутках, измерение углов градусами, минутами и секундами. Так постепенно, под влиянием потребностей экономического характера, человечество создавало свои методы счета и достигло, наконец, стройного метода, который в дальнейшем сознательного совершенствовался и упрощался, пока не превратился в метод, которым и пользуется современная математика.

счет натуральный число клинописный

3. Натуральные числа

Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, «три человека», «три озера» и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово «три» в контекстах «три человека», «три лодки» передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием («много») о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими, как «толпа», «стадо», «куча» и т.д. Источником возникновения понятия возникновения отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона. У большинства народов первым таким эталоном являются пальцы («счёт на пальцах»), что с несомненностью подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отличенным, не зависящим от качества считаемых предметов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея - обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке. С развитием письменности возможности воспроизведения числа значительно расширились. Сначала числа стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших чисел. Вавилонские клинописные обозначения числа, так же, как и сохранившиеся до наших дней «римские цифры», ясно свидетельствуют именно об этом пути формирования обозначения для числа. Шагом вперёд была индийская позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков - цифр. Таким образом, параллельно с развитием письменности понятие натурального числа закрепляется в форме слов в устной речи и в форме обозначения специальными знаками в письменной. Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения. Натуральные числа, кроме основной функции - характеристики количества предметов, несут ещё другую функцию - характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.). В частности, расположения в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребляемым с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов.). Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычное, что не возникло потребности в его определении в терминах каких- либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа - с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг.19в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощности, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется что-то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность. Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному из считаемых предметов и предметов, составляющих данную совокупность. Действительно, на эталонную совокупность на ранних ступенях - пальцы рук и зарубки на палочке и т.д. на современном этапе - слова и знаки, обозначающие число. Определение данное Кантором, было отправным пунктом для обобщения понятия количественного числа в направлении количественной характеристики бесконечных множеств.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

    курсовая работа [8,2 M], добавлен 14.09.2015

  • Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа [66,8 K], добавлен 22.10.2011

  • Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа [892,8 K], добавлен 04.11.2013

  • Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.

    реферат [42,5 K], добавлен 13.04.2008

  • Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.

    презентация [713,4 K], добавлен 20.06.2011

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат [75,2 K], добавлен 09.07.2009

  • Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация [419,8 K], добавлен 10.11.2010

  • Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат [459,5 K], добавлен 25.12.2014

  • История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.

    курсовая работа [5,3 M], добавлен 21.06.2010

  • Рациональные и иррациональные числа и их свойства. Гипотеза Акулича и явные формулы. Разбиение натурального ряда на две непересекающиеся возрастающие последовательности. Свойства арифметических действий над рациональными и иррациональными числами.

    научная работа [1,1 M], добавлен 05.02.2011

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация [178,6 K], добавлен 13.05.2011

  • Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.

    презентация [1,1 M], добавлен 15.04.2015

  • Числа натурального ряда, их закономерное периодическое изменение: сведение бесконечного к конечному путем выявления периодичности. Обоснование метода поиска простых чисел с помощью "решета" Баяндина. Закон динамического сохранения относительных величин.

    книга [359,0 K], добавлен 28.03.2012

  • Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Определение числа "пи" как отношения длины окружности к её диаметру. История числа "е", мнемоника и мнемоническое правило, числа с собственными именами.

    реферат [125,9 K], добавлен 28.11.2010

  • Проблема несоизмеримых, первый кризис в основании математики, его следствия и попытки преодоления. Зарождение и развитие понятия числа. Становление теории предела, создание теории действительного числа. Великие метематики: Вейерштрасс, Кантор, Дедекинд.

    реферат [65,2 K], добавлен 26.11.2009

  • Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.

    презентация [128,9 K], добавлен 12.01.2014

  • Простые числа-близнецы - числа, находящиеся на расстоянии друг от друга в 2 единицы.

    научная работа [65,3 K], добавлен 12.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.