Софизмы и парадоксы на примере математики

Софизм - рассуждение, кажущееся правильным, но содержащее скрытую логическую ошибку и служащее для придания видимости истинности ложному заключению. Парадоксы на примере математической науки. Преднамеренное, сознательное нарушение правил логики.

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 17.02.2015
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.

    контрольная работа [50,4 K], добавлен 10.10.2014

  • Свойство, устранение и объяснение парадоксов в математике. Логический парадокс "Лжец" Эвбулида из Милета (IV в. до н.э.). Парадокс Греллинга, связанный с прилагательными. Парадоксы с множествами, парадоксы-петли. Проблемы парадоксов в математике.

    контрольная работа [34,1 K], добавлен 30.01.2010

  • Применение методов математической логики и других разделов высшей математики в задачах теоретической лингвистики при анализе письменной речи на русском и английском языках. Исследование и распознавание речевых единиц. Методы математической логики.

    реферат [39,8 K], добавлен 01.11.2012

  • Изучение понятия о логической величине. Отличия общих, частных, единичных высказываний. Таблица истинности. Принципы использования простых и составных логических выражений. Вложенное ветвление. Определение наибольшего среди трех чисел неполного ветвления.

    презентация [97,3 K], добавлен 09.10.2013

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Порядок доказательства истинности заключения методом резолюции (с построением графа вывода пустой резольвенты) и методом дедуктивного вывода (с построением графа дедуктивного вывода). Выполнение бинарных операций и составление результирующих таблиц.

    курсовая работа [185,3 K], добавлен 24.05.2015

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

  • История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

    реферат [38,2 K], добавлен 09.10.2008

  • Определение формулы исчисления высказываний, основные цели математической логики. Построение формул алгебры высказываний. Равносильность формул исчисления высказываний, конъюнктивная и дизъюнктивная нормальная форма. Постановка проблемы разрешимости.

    контрольная работа [34,3 K], добавлен 12.08.2010

  • Природа математики как строгой науки, отношения математических объектов и целостных структур реального мира. Различия в трактовке Платоном и Аристотелем онтологического статуса математических сущностей. Анализ математической концепции семинара Н. Бурбаки.

    реферат [26,4 K], добавлен 29.01.2014

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация [67,8 K], добавлен 23.12.2012

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

  • Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.

    курсовая работа [347,2 K], добавлен 12.09.2009

  • История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.

    презентация [7,3 M], добавлен 20.09.2015

  • Как высшая математика разрешает философские парадоксы. Математика в апориях Зенона. Точная математическая формулировка интуитивного физического или метафизического понятия непрерывного движения. Попытки избавления от допущений в математических выкладках.

    реферат [320,7 K], добавлен 05.01.2013

  • Нечеткая логика как раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечеткого множества. Основные правила и законы данной логики, алгоритм Мамдани. Содержание и принципы решения задачи о парковке.

    курсовая работа [1,4 M], добавлен 22.04.2014

  • Литералы рассуждения и вопрос об их отрицаниях. Математическая модель отрицания для рассуждения, содержащего связную совокупность суждений. Отрицания в математической логике и дополнения в алгебре множеств. Интерпретации формул математической логики.

    контрольная работа [40,8 K], добавлен 03.09.2010

  • Методы доказательства клаузы: с помощью резолюций и таблиц истинности. Определение ложности и истинности клаузы. Особенности составления легенды по клаузе. Составление клаузы по легенде. Определение истинности логического выражения путем конкретизации.

    контрольная работа [29,9 K], добавлен 14.06.2009

  • Возникновение и развитие теории вероятностей и ее приложений. Решение классических парадоксов игры в кости и "азартных игр". Парадокс закона больших чисел Бернулли и Бертрана, дня рождения и раздачи подарков. Изучение парадоксов из книги Г. Секея.

    контрольная работа [64,8 K], добавлен 29.05.2016

  • Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.

    презентация [2,4 M], добавлен 20.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.