Линейная регрессия
Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
Рубрика | Математика |
Предмет | Математика |
Вид | краткое изложение |
Язык | русский |
Прислал(а) | Gerxard |
Дата добавления | 17.03.2015 |
Размер файла | 949,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа [380,9 K], добавлен 05.04.2015Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат [383,7 K], добавлен 19.08.2015Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.
презентация [100,3 K], добавлен 16.12.2014Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.
контрольная работа [242,1 K], добавлен 05.11.2011Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.
задача [133,0 K], добавлен 21.12.2008Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.
презентация [387,8 K], добавлен 25.05.2015Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.
контрольная работа [68,7 K], добавлен 21.09.2009Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.
лабораторная работа [253,6 K], добавлен 05.01.2015Проверка адекватности линейной регрессии. Вычисление выборочного коэффициента корреляции. Обработка одномерной выборки методами статистического анализа. Проверка гипотезы значимости с помощью критерия Пирсона. Составление линейной эмпирической регрессии.
задача [409,0 K], добавлен 17.10.2012Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.
контрольная работа [99,4 K], добавлен 22.07.2009Построение линейной множественной регрессии для моделирования потребления продукта в разных географических районах. Расчет оценки дисперсии случайной составляющей. Вычисление и корректировка коэффициентов детерминации. Расчет доверительного интервала.
контрольная работа [814,0 K], добавлен 19.12.2013Алгоритм построения ранговой оценки неизвестных параметров регрессии. Моделирование регрессионных зависимостей с погрешностями, имеющими распределения с "тяжёлыми" хвостами. Вычисление асимптотической относительной эффективности рангового метода.
курсовая работа [1,2 M], добавлен 05.01.2015Исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Анализ расхождения между трендом и прогнозом, последующая оценка близости распределения расхождений наблюдений и распределения сгенерированного шума.
курсовая работа [1,0 M], добавлен 29.01.2010Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.
курсовая работа [141,5 K], добавлен 23.07.2011Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.
курсовая работа [232,7 K], добавлен 21.05.2015Cтатистический анализ зависимости давления. Построение диаграммы рассеивания и корреляционной таблицы. Вычисление параметров для уравнений линейной и параболической регрессии, выборочных параметров. Проверка гипотезы о нормальном распределении признака.
курсовая работа [613,3 K], добавлен 24.10.2012Характеристика экзогенных и эндогенных переменных. Теорема Гаусса-Маркова. Построение двухфакторного и однофакторных уравнения регрессии. Прогнозирование значения результативного признака. Оценка тесноты связи между результативным признаком и факторами.
курсовая работа [575,5 K], добавлен 19.05.2015Функциональные и корреляционные зависимости. Сущность корреляционной связи. Методы выявления наличия корреляционной связи между двумя признаками и измерение степени ее тесноты. Построение корреляционной таблицы. Уравнение регрессии и способы его расчета.
контрольная работа [55,2 K], добавлен 23.07.2009Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.
курсовая работа [352,9 K], добавлен 26.01.2010Составление математической модели для предприятия, характеризующей выручку предприятия "АВС" в зависимости от капиталовложений (млн. руб.) за последние 10 лет. Расчет поля корреляции, параметров линейной регрессии. Сводная таблица расчетов и вычислений.
курсовая работа [862,4 K], добавлен 06.05.2009