Линейная алгебра. Аналитическая геометрия

Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 18.03.2015
Размер файла 84,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Линейная алгебра. Аналитическая геометрия

1. Матрицы и виды матриц

Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество n столбцов.

Виды:

Матрица строка:

m=1, А = {a11 a12 = am}

Матрица столбец:

n=1, B=

Квадратная матрица - это матрица, у которой число строк и столбцов совпадают, и это число называется порядком матрицы.

Главной диагональю матрицы называется диагональ, идущая из левого верхнего угла матрицы в правый нижний ее угол. Побочной диагональю той же матрицы называется диагональ, идущая из левого нижнего угла в правый верхний угол.

Диагональная матрица. Понятие диагональной матрицы: Диагональной называется квадратная матрица, у которой все элементы вне главной диагонали равны нулю.

Единичная матрица. Понятие единичной матрицы: Единичной (обозначается Е, иногда I) называется диагональная матрица с единицами на главной диагонали.

Нулевая матрица. Понятие нулевой матрицы: Нулевой называется матрица, все элементы которой равны нулю.

матрица определитель линейный плоскость

Обратная матрица -- такая матрица A?1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

! AA{-1} = A{-1}A = E

2.Операции над матрицами

Умножение матрицы на число. Умножить матрицу на некое число - означает умножить каждый элемент заданной матрицы на это число.

Сложение матриц. Складывать можно только матрицы одной размерности. При сложении складываются соответствующие элементы.

Вычитание матриц. Разностью матриц и одного и того же размера называется матрица такого же размера, получаемая из исходных путем прибавления к матрице матрицы, умноженной на (-1).

Транспонирование матрицы. Транспонированная матрица получается из исходной матрицы, если все стороны исходной матрицы записать в виде столбцов.

3. Определители. Способы вычисления определителей 2-го и 3-го порядков

Определитель матрицы - не матрица, либо алгебраическое выражение, либо число.

Определитель диагональной матрицы - он равен произведению диагональных элементов.

Определитель матрицы второго порядка

Определителем матрицы второго порядка, или определителем второго порядка, называется число, которое вычисляется по формуле:

Определитель матрицы третьего порядка

Определителем матрицы третьего порядка, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Каждое слагаемое состоит из произведения трех сомножителей.

Знаки, с которыми члены определителя входят в формулу нахождения определителя третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из левого рисунка, а последующие три слагаемые берутся со знаком минус и определяются из правого рисунка.

4. Способы вычисления определителей высших порядков

Материал данной страницы посвящен вычислению определителей высших порядков с помощью теоремы Лапласа.

Применение теоремы Лапласа сводится к выполнению следующих действий: некоторым образом выбирается та строка (столбец), разложением по которой будет вычисляться данный определитель.

Тогда искомый определитель равен следующему выражению:

первый элемент выбранной строки (столбца) умножается на его алгебраическое дополнение,

плюс второй элемент этой строки (столбца) умножается на его алгебраическое дополнение,

плюс ... и так далее до завершения прохода по элементам данной строки (столбца).

5. Система линейных уравнений

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) - некоторые известные числа, а x1,…,xn - неизвестные. В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j - номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

6. Матричный способ задания системы линейных уравнений

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение, т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде или короче A•X=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ? 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A: . Поскольку A-1A = E и E•X = X, то получаем решение матричного уравнения в виде X = A-1B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.

7. Способы решения системы линейных уравнений

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

Называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Д ? 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение - на A21 и 3-е - на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и

Наконец несложно заметить, что

Таким образом, получаем равенство:

Следовательно,

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Д ? 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на - а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на -а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го - x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

перестановка строк или столбцов;

умножение строки на число, отличное от нуля;

прибавление к одной строке другие строки.

8. Уравнение прямой и способы её задания. Свойство параллельности и перпендикулярности прямых

Две (различные) прямые на плоскости либо пересекаются, т. е. имеют одну общую точку, либо параллельны, т. е. не имеют общих точек.

Свойство параллельности прямых обозначается символом «?»; например, a || b.

Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной прямой.

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Признаки параллельности прямых. Две прямые параллельны, если:

1) каждая из них параллельна третьей;

2) они пересечены третьей и внутренние накрест лежащие углы равны;

3) они пересечены третьей прямой и сумма внутренних односторонних углов равна 180°.

Две прямые перпендикулярны (ортогональны), если, пересекаясь, они образуют прямые углы.

Свойство перпендикулярности обозначают символом «?»; например, `?`(a, b).

Если обе стороны одного острого угла параллельны сторонам другого острого угла (либо обе стороны соответственно перпендикулярны), то эти углы равны.

9. Окружность и эллипс

Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

10. Уравнения плоскости в пространстве

Простейшей поверхностью является плоскость. Плоскость в пространстве Oxyz можно задать разными способами. Каждому из них соответствует определенный вид ее уравнения.

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть в пространстве Oxyz плоскость Q задана точкой и вектором , перпендикулярным этой плоскости.

Выведем уравнение плоскости Q. Возьмем на ней произвольную точку и составим вектор

.

При любом расположении точки М на плоскости Q векторы и взаимно перпендикулярны, поэтому их скалярное произведение равно нулю:

, т. е.

Координаты любой точки плоскости Q удовлетворяют уравнению, координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (для них ).

Уравнение называется уравнением плоскости, проходящей через данную точку перпендикулярно вектору . Оно первой степени относительно текущих координат x, y, z. Вектор называется нормальным вектором плоскости.

Придавая коэффициентам А, В и С уравнения различные значения, можно получить уравнение любой плоскости, проходящей через точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей, а уравнение - уравнением связки плоскостей.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.

    презентация [316,5 K], добавлен 14.11.2014

  • Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.

    контрольная работа [797,4 K], добавлен 18.11.2013

  • Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.

    лекция [55,2 K], добавлен 02.06.2008

  • Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.

    учебное пособие [1,5 M], добавлен 06.11.2011

  • Понятие и назначение определителей, их общая характеристика, методика вычисления и свойства. Алгебра матриц. Системы линейных уравнений и их решение. Векторная алгебра, ее закономерности и принципы. Свойства и приложения векторного произведения.

    контрольная работа [996,2 K], добавлен 04.01.2012

  • Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.

    учебное пособие [223,0 K], добавлен 04.03.2010

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике [1,1 M], добавлен 15.11.2014

  • Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.

    презентация [642,7 K], добавлен 31.10.2016

  • Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.

    книга [1,7 M], добавлен 03.10.2011

  • Общая характеристика примеров нахождения точки пересечения двух прямых. Знакомство с условиями параллельности и перпендикулярности прямых, рассмотрение особенностей решения уравнений. Анализ способов нахождения углового коэффициента искомой прямой.

    презентация [97,6 K], добавлен 21.09.2013

  • Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.

    контрольная работа [567,1 K], добавлен 21.05.2013

  • Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.

    презентация [1,5 M], добавлен 14.10.2014

  • Понятие плоскостей, их классификация и разновидности, способы и принципы задания. Сущность и этапы решения позиционных задач. Исследование принадлежности прямой заданной плоскости, методика и цели доказательства их параллельности и перпендикулярности.

    презентация [95,4 K], добавлен 27.10.2013

  • Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

    лекция [160,8 K], добавлен 17.12.2010

  • Нахождение координат треугольника по заданным вершинам. Условия перпендикулярности, параллельности и совпадения прямых. Уравнение плоскости, проходящей через точку. Составление канонических уравнений прямой, кривой второго порядка и поверхности.

    контрольная работа [259,7 K], добавлен 28.03.2014

  • Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.

    контрольная работа [1,0 M], добавлен 09.10.2011

  • Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.

    презентация [106,9 K], добавлен 21.09.2013

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Определение разности и произведения матриц. Решение системы линейных уравнений методом Крамера. Уравнение прямой проходящей через точки A (xa, ya) и C (xc, yc). Порядок определения типа кривой второго порядка и ее основных геометрических характеристик.

    контрольная работа [272,0 K], добавлен 11.12.2012

  • Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.

    курсовая работа [1,1 M], добавлен 22.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.