Математика эпохи Возрождения

Развитие математики в XV-XVI веках. Усовершенствование математических вычислений в эпоху Возрождения: десятичных дробей, логарифмов. Проблема решения в радикалах уравнений третьей и четвертой степеней. Расширение символики алгебраических операций.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 23.03.2015
Размер файла 23,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Математика эпохи Возрождения

математика возрождение дробь алгебраический

XV и XVI века вошли в историю Европы под названием «эпохи Возрождения», при этом имеется в виду возрождение того высокого уровня культуры, который был достигнут в античном мире. На самом же деле эта эпоха характеризуется гораздо более глубокими преобразованиями в жизни всего общества.

В промышленности появляются мануфактуры, требующие технических усовершенствований и изобретений. Тогда же появляются в Европе компас, часы и порох, дешевая бумага и книгопечатание. Гигантски возрастает торговля, приведшая к исключительному росту мореплавания и к великим географическим открытиям. Бумага и книгопечатание делают научные знания необходимым элементом общественной жизни. Совершается подлинная культурная революция.

Исторически сложилось так, что именно в математике начинают искать последний критерий истины. С одной стороны, чисто практическое преимущество, которое получал купец над конкурентами даже при небольшом улучшении способов вычисления своих координат на море, а с другой стороны, религиозные традиции, утверждавшие, что Вселенная построена Богом по математическому плану, ставили математику в центр внимания. И если в начале Средних веков «математиками» называли людей, занимавшихся астрологией, и подвергали их преследованию как колдунов и чернокнижников, то Леонардо да Винчи пишет, что тот, кто порочит высшую достоверность математики, тот питается сумбуром.

В XV--XVI вв. математика развивается главным образом в Италии, Франции и Германии, к которым в конце XVI в. присоединяется Голландия.

В первой половине XVI в. благодаря усилиям итальянских математиков в алгебре происходят крупные сдвиги, сопровождаемые весьма драматическими событиями. Профессор Болонского университета Сципион Даль Ферро (1465-1526) находит общее решение уравнения третьей степени но держит его в секрете, ибо оно представляет большую ценность на соревнованиях по решению задач, которые тогда широко практиковались в Италии. Перед смертью он открывает секрет своему ученику Фиоре. В 1535 Фиоре вызывает на соревнование талантливейшего математика Никколо Тарталью (1499-1557), который, зная, что Фиоре обладает способом решения кубического уравнения, прилагает максимум усилий и сам находит решение! Тарталья побеждает на соревновании, но также держит свое открытие в секрете. Наконец, на сцене появляется Джероламо Кардано (1501-1576). Он тщетно пытается найти алгоритм решения кубического уравнения и в 1539 г. обращается к Тарталье с просьбой поведать ему тайну. Взяв с Кардано «священную клятву» молчания, Тарталья частично и в не слишком вразумительной форме приоткрывает для него завесу. Кардано не удовлетворяется и прилагает усилия, чтобы ознакомиться с рукописью покойного Даль Ферро. Это ему удается, и в 1545 г. он публикует книгу, в которой сообщает алгоритм, сводящий решение кубического уравнения к радикалам («формула Кардано»). В этой же книге содержится еще одно открытие, сделанное учеником Кардано Луиджи (Лудовико) Феррари (1522-1565), а именно решение в радикалах уравнения четвертой степени. Тарталья обвиняет Кардано в нарушении клятвы, завязывается острая и продолжительная полемика.

С основными трудами Тартальи историки науки познакомились в начале XIX в. В "Новой науке" (1537) Никколо рассматривает различные вопросы механики, свободного падения тел и первым находит, что дальше всего камень улетит, если его бросить под углом 45° к горизонту. "Вопросы и различные изобретения" (1546) посвящены практической механике. В этом труде автор решает различные задачи топографии, фортификации и баллистики. Наконец, в последней работе - "Общем трактате о числе и мере" - он рассматривает различные проблемы арифметики, алгебры, геометрии и теории вероятностей.

Историк науки Мориц Кантор считает, что у Тартальи было слишком мало времени для решения проблемы, над которой лучшие умы бились на протяжении двух тысячелетий. Кроме того, добавляет он, решения Тартальи и дель Ферро похожи как две капли воды. В настоящее время большинство ученых сходится на том, что первым решение кубического уравнения нашел Ферро; Фиоре узнал его от своего учителя; Тарталья переоткрыл формулу Ферро; Кардано же дал полную и исчерпывающую теорию решения любого уравнения третьей степени.

Джероламо Кардано (1501-1576) вошёл в историю как математик, философ, естествоиспытатель и изобретатель. Существует легенда, будто он составил свой гороскоп и предсказал, что умрёт 21 сентября 1576 г. Дабы поддержать собственную славу астролога, к назначенному сроку он уморил себя голодом. Даже если этот рассказ и вымышленный, суть характера Кардано передана очень верно. Самой известной книгой Кардано стал трактат по алгебре под названием "Великое искусство", опубликованный в 1545 г. Книга содержала формулы решения кубического уравнения - секрет Даль Ферро и Тартальи.

Франсуа Виет (1540-1603) родился в городке Фонтене-ле-Конт провинции Пуату, недалеко от знаменитой крепости Ла-Ро-шель. Сын прокурора, Виет получил юридическое образование и начал адвокатскую практику в родном городе. Но вскоре он стал секретарём и домашним учителем в доме знатного дворянина-гугенота де Партеней. (Гугеноты - последователи кальвинизма, одного из основных течений Реформации Церкви.) Тогда Виет очень увлёкся изучением астрономии и тригонометрии и даже получил некоторые важные результаты.

В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и отчасти благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником Генриха III, а после его смерти - Генриха IV. Но главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики. Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся. Нельзя было записывать и, следовательно, изучать в общем виде алгебраические уравнения или какие-нибудь алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Так, например, у Кардано рассматривались 66 видов алгебраических уравнений. Поэтому надо было доказать, что существуют такие общие действия над всеми числами, которые от этих самых чисел не зависят. Виет и его последователи установили, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка. Главное, что с этими числами можно производить алгебраические действия и в результате снова получить числа того же рода. Значит их можно обозначить какими-либо отвлеченными знаками. Виет это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытие, поставив перед собой цель изучать не числа, а действия над ними.

Не случайно, что Виета называют "отцом" алгебры, основоположником буквенной символики. Особенно гордился Виет всем известной теперь теоремой о выражении корней квадратного уравнения через его коэффициенты, полученной им самостоятельно, хотя как теперь стало известно, зависимость между коэффициентами и корнями уравнения (даже более общего вида, чем квадратное) была известна еще Кардано, а в таком виде, в каком мы используем ее для квадратного уравнения древним вавилонянам. Из других открытий Виета следует отметить выражение для синусов и косинусов кратных дуг через sin(x) и cos(x). Эти знания тригонометрии Виет с успехом применял как в алгебре при решении алгебраических уравнений, так и в геометрии, например, при решении с помощью циркуля и линейки знаменитой задачи Аполлония Пергского о построении круга, касательного к трем данным кругам.

Лука Пачоли (около 1445 - около 1514) был крупнейшим европейским алгебраистом XV в. В Милане он подружился с выдающимся художником и учёным Леонардо да Винчи. По настоянию Леонардо в 1497 г. Пачоли написал книгу "О Божественной пропорции" (её печатное издание вышло в Венеции в 1509 г.). Сам Леонардо выполнил иллюстрации для этой книги, в том числе 59 изображений многогранников. Но самым знаменитым сочинением Пачиоли стала "Сумма знаний по арифметике, геометрии, отношениям и пропорциональности" (1487 г.).

На Руси математика начинает развиваться только в XVI в., когда после освобождения Руси от татарского ига устанавливаются новые связи между нею и Западной Европой. В это время на Руси появляются рукописные переводы и компиляции из сочинений европейцев и европейских переводов ученых Востока; в этих рукописях создается русская математическая терминология. Особенно следует отметить арифметические рукописи с традиционным названием. «Книга рекома по-гречески арифметика, а по-немецки -- алгоризма, а по-русски цифирная счетная мудрость». До настоящего времени дошла единственная математическая рукопись XVI в.-- «статья» из «Книги сошному письму», посвященная вычислению налога с земли, взимавшемуся в зависимости от количества и качества земельной площади в условных единицах -- «сохах». Здесь же впервые описываются русские счеты, первоначально приспособленные для расчетов «сошного письма». В XVI--XVII вв. появляются первые русские рукописные книги по математики, вытесненные в начале XVIII в. книгой Л. Ф. Магницкого «Арифметика, сиречь наука числительная», напечатанной в Москве в 1703 г.

Подводя итоги этого обзора, можно сказать, что в Эпоху Возрождения математика Европы впервые вышла за пределы знаний, полученных в наследство от древних греков и народов Востока. Именно в это время закончилась решительной победой многовековая борьба за введение позиционной десятичной арифметики. В это время была создана арифметическая и алгебраическая символика, отсутствие которой тормозило прогресс теории уравнений ранее. Введены были дробные и отрицательные показатели и отрицательные числа; успешно решена проблема решения в радикалах уравнений третьей и четвертой степеней -- проблема, перед которой остановились ученые стран ислама. В связи с решением этой проблемы были формально введены мнимые числа. Виет построил алгебру как символическое исчисление, введя специальные буквенные обозначения для неизвестных и для коэффициентов многочленов, а также расширив символику алгебраических операций. В арифметике были введены десятичные дроби, удобства которых быстро оценили ученые. Значительны были достижения плоской и сферической тригонометрии, были усовершенствованы методы вычисления таблиц. Долгий период изучения постоянных величин подходил к завершению. Были созданы условия для возникновения теории переменных величин, символической алгебры, аналитической геометрии, дифференциального и интегрального исчислений.

Размещено на Allbest.ru

...

Подобные документы

  • Описание жизни Италии и мира того времени, когда жил и творил Джироламо Кардано. Научная деятельность математика, обзор его математических трудов и поиск решения кубических уравнений в радикалах. Способы решений уравнений третьей и четвертой степеней.

    курсовая работа [419,7 K], добавлен 26.08.2011

  • История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.

    презентация [7,3 M], добавлен 20.09.2015

  • Европейская математика эпохи Возрождения. Создание буквенного исчисления Франсуа Виет и метода решения уравнений. Усовершенствование вычислений в конце XVI – начале XVII веков: десятичные дроби, логарифмы. Установление связи тригонометрии и алгебры.

    презентация [4,9 M], добавлен 20.09.2015

  • Из истории десятичных и обыкновенных дробей. Действия над десятичными дробями. Сложение (вычитание) десятичных дробей. Умножение десятичных дробей. Деление десятичных дробей.

    реферат [8,3 K], добавлен 29.05.2006

  • Греческая математика и её философия. Взаимосвязь и совместный путь философии и математики от начала эпохи возрождения до конца XVII века. Философия и математика в эпохе Просвещения. Анализ природы математического познания немецкой классической философии.

    дипломная работа [68,4 K], добавлен 07.09.2009

  • Уравнение в дробях количества знаков после запятой, выполнение сложения и вычитания, не обращая внимания на запятую. Практическая значимость теории десятичных дробей. Самостоятельная работа с последующей проверкой результатов, выполнение вычислений.

    презентация [35,7 K], добавлен 02.07.2010

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат [27,6 K], добавлен 11.09.2010

  • Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.

    шпаргалка [129,6 K], добавлен 22.06.2008

  • Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.

    реферат [7,5 M], добавлен 18.12.2012

  • Характеристика видов математических уравнений - алгебраических и трансцендентных, их сравнение и отличительные особенности. Возможности метода замены неизвестного при решении алгебраических уравнений, применение в стандартных и нестандартных ситуациях.

    контрольная работа [246,3 K], добавлен 21.09.2010

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

  • Теоретические основы и предмет преподавания математики. Понятие и сущность индукции, дедукции и аналогии. Алгоритмы решения математических задач. Методика введения отрицательных, дробных и действительных чисел. Характеристика алгебраических выражений.

    курс лекций [728,4 K], добавлен 30.04.2010

  • Преподавательская работа швейцарского математика Габриэля Крамера, введение в анализ алгебраических кривых. Система произвольного количества линейных уравнений с квадратной матрицей Крамера. Классификация и порядок математических и алгебраических кривых.

    реферат [47,6 K], добавлен 17.05.2011

  • Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.

    презентация [987,7 K], добавлен 22.11.2014

  • Обозначение десятичной дроби в разное время. Использование десятичной системы мер в Древнем Китае. Запись дроби в одну строку числами в десятичной системе и правила действия с ними. Симон Стевин как фландрский учений, изобретатель десятичных дробей.

    презентация [169,0 K], добавлен 22.04.2010

  • Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.

    реферат [60,6 K], добавлен 15.08.2009

  • Шотландский барон Джон Непер как первый изобретатель логарифмов. Пропорции Непера для логарифмирования. Применение логарифмов Кеплером в Марбурге в 1624-1625 гг. Таблица положительных, отрицательных степеней числа 2. Гиперболические логарифмы, применение.

    доклад [120,5 K], добавлен 24.12.2011

  • Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.

    курсовая работа [118,4 K], добавлен 04.05.2014

  • Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.

    лабораторная работа [489,3 K], добавлен 28.10.2014

  • Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.

    презентация [1,6 M], добавлен 16.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.