Особенность геометрической вероятности
Характеристика основных положений теории вероятности. Анализ невозможных, возможных и достоверных событий в математике. Классическое определение закономерностей массовых случайных явлений. Сущность принципа разыскания геометрических возможностей.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 17.03.2015 |
Размер файла | 18,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Дагестанский Государственный Институт Народного Хозяйства
Реферат
На тему: Геометрическая вероятность
Выполнил(а): ст-ка 2к.6гр
Кариева Кистаман
Проверил (а):
Ибрагимова Белла Муслимовна
Махачкала - 2014 г
Содержание
Введение
1. Основное положение теории
2. Абстракция событий
3. Классическое определение вероятности
4. Геометрическая вероятность
Заключение
Список использованной литературы
Введение
Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники. Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин.
При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Случай, случайность -- с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут лет места для математики--какие уж законы в царстве Случая! Но и здесь наука обнаружила интересные закономерности--они позволяют человеку уверенно чувствовать себя при встреча со случайными событиями. Как наука теория вероятности зародилась в 17в. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр. Слово «азарт», под которым обычно понимается сильное увлечение, горячность, является транскрипцией французского слова hazard, буквально означающего «случай», «риск».
Азартными называют те игры, а которых выигрыш зависит главным образом не от умения игрока, а от случайности. Схема азартных игр была очень проста и могла быть подвергнута всестороннему логическому анализу. Первые попытки этого рода связаны с именами известных учёных--алгебраиста Джероламо Кардана (1501- 1576) и Галилео Галилея (1564--1642). Однако честь открытия этой теории, которая не только даёт возможность сравнивать случайные величины, но и производить определенные математические операции с ними, принадлежит двум выдающимися ученым--Блезу Паскалю (1623--1662) и Пьеру Ферма. Ещё в древности было замечено, что имеются явления, которые обладают особенностью: при малом числе наблюдений над ними не наблюдается никакой правильности, но по мере увеличения числа наблюдений всё яснее проявляется определенная закономерность. Всё началось с игры в кости.
1. Основное положение теории
Теория вероятности - это наука, занимающаяся изучением закономерностей массовых случайных явлений. Такие же закономерности, только в более узкой предметной области социально-экономических явлений, изучает статистика. Между этими науками имеется общность методологии и высокая степень взаимосвязи. Практически любые выводы сделанные статистикой рассматриваются как вероятностные. Особенно наглядно вероятностный характер статистических исследований проявляется в выборочном методе, поскольку любой вывод сделанный по результатам выборки оценивается с заданной вероятностью. С развитием рынка постепенно сращивается вероятность и статистика, особенно наглядно это проявляется в управлении рисками, товарными запасами, портфелем ценных бумаг и т.п. За рубежом теория вероятности и математическая статистика применятся очень широко.
В нашей стране пока широко применяется в управлении качеством продукции, поэтому распространение и внедрение в практику методов теории вероятности актуальная задача. Как уже говорилось, понятие вероятности события определяется для массовых явлений или, точнее, для однородных массовых операций. Однородная массовая операция состоит из многократного повторения подобных между собой единичных операций, или, как говорят, испытаний. Каждое отдельное испытание заключается в том, что создается определенный комплекс условий, существенных для данной массовой операции. В принципе должно быть возможным воспроизводить эту совокупность условий неограниченное число раз.
Пример1. При бросании игральной кости "наудачу" существенным условием является только то, что кость бросается на стол, а все остальные обстоятельства (начальная скорость, давление и температура воздуха, окраска стола и т. д.) в расчет не принимаются.
Пример 2. Стрелок многократно стреляет в определенную мишень с данного расстояния из положения "стоя"; каждый отдельный выстрел является испытанием в массовой операции стрельбы в данных условиях. Если же стрелку разрешено при разных выстрелах менять положение ("стоя", "лежа", "с колена"), то предыдущие условия существенно изменяются и следует говорить о массовой операции стрельбы с данного расстояния.
2. Абстракция событий
В математике событие - это любой объект или явление, которое может появиться или не появиться при определенных условиях. Причем создание этих условий не является обязательной причиной появления ожидаемого явления. Различают невозможные, возможные и достоверные события.
Невозможные события - никогда не появляются при данных условиях (правильнее говорить, что вероятность появления такого события бесконечно мала). геометрический вероятность достоверный математика
Достоверные события - появляются всегда, если имеют место соответствующие условия. В данном случае между условиями и событиями однозначная причинное - следственная связь.
Возможные события - события, которые при одних и тех же условиях могут появляться, а могут не появляться, то есть создание условий в данном случае не гарантирует наступления события, что свидетельствует о неоднозначных или не прямых причинное - следственных связях между условиями и ожидаемыми событиями.
3. Классическое определение вероятности
Введение этого понятия произошло не в результате однократного действия, а заняло длительный промежуток времени, в течении которого происходило совершенствование формулировки .Классическое определение вероятности было подготовлено исследованиями Граунта и Петти, результаты которых убедительно показали преимущества понятия частоты перед понятием численности. Понятие частоты, т.е. отношения числа опытов, в которых появлялось данное событие, к числу всех проведённых опытов, позволяет получить практические выводы, тогда как рассмотрение численностей оставляет исследователя в состоянии неопределённости.
Классическое определение вероятности (в весьма несовершенной форме) впервые появляется у Я.Бернулли, в его сочинении «Искусство предположений» (1713). В первой главе четвёртой части этой книги он писал: Вероятность же есть степень достоверности и отличается от неё, как часть от целого». В эту формулировку Я. Бернулли вкладывал современный смысл, что видно из его последующих слов: «Именно, если полная и безусловная достоверность, обозначаемая нами буквой б или 1(единицей),будет, для примера, предположена состоящий из пяти вероятностей, как бы частей, из которых три благоприятствуют существованию или осуществлению какого-либо события, остальные же не благоприятствуют, то будет говориться, что это событие имеет 3б/5 или 3/5 достоверности».
В дальнейшем он писал об отношении числа благоприятствующих случаев к числу всех возможных, предполагая эти случаи равновозможными, но специально не оговаривая этого. Из этого высказываний следует, что Бернулли владел и статистическим понятием вероятности. Им было введено в рассмотрение и использование понятие вероятности случайного события как числа, заключённого между 0 и 1. Достоверному событию приписывалось единица (максимальное значение), а невозможному - нуль (минимальное значение). Было ясно сказано, что это число может быть определено двумя способами:1)как отношение числа случаев, благоприятствующих данному событию, к числу всех равновозможных случаев; 2)как частота события при проведении большого числа независимых испытаний. Можно сказать, что с этого момента начинается история теории вероятностей.
4. Геометрическая вероятность
В 1692 г.в Лондоне был издан английский перевод книги Х. Гюйгенса «О расчётах азартных играх». Переводчик книги - математик , врач и сатирик Д.Арбутнов(1667-1735) добавил несколько задач, среди которых оказалась задача совсем иной природы, по сравнению с теми, которые рассматривались автором. Задача Арбутнота состояла в следующем: на плоскость наудачу бросают прямоугольный параллелепипед с рёбрами, равными а, в, с; как часто параллелепипед будет выпадать гранью а в? Решение задачи дано Т.Симпсоном (1710-1761) в книге «Природа и закон случая» (1740). Им предложена следующая идея решения. Опишем около параллелепипеда сферу и спроектируем из центра на её поверхность все рёбра, боковые грани и основания. В результате поверхность сферы будет разбита на шесть непересекающихся областей, соответствующих граням параллелепипеда.
Симпсон подвёл итог: « Нетрудно заметить, что определённая часть сферической поверхности, ограниченная траекторией, описанной таким образом радиусом, будет находится в таком же отношении к общей площади поверхности , как вероятность появления некоторой грани к единице». Сказанное в полной мере выражает принцип разыскания геометрических вероятностей: вводится мера множества благоприятствующих событию случаев и рассматривается её отношение к мере множества всех возможных случаев. В данном случае полная мера сводится к площади поверхности шара.
Французский естествоиспытатель Бюффон (1707-1788),член Парижской академии наук (1733) и почётный член Петербургской академии наук (1766), дважды публиковал работы, посвящённые геометрическим вероятностям (1733,1777).Он рассматривал следующие задачи: 1)пол разграфлен на одинаковые фигуры (прямоугольники); на пол бросается монета, диаметр которой 2r меньше каждой из сторон прямоугольника, и монета целиком укладывается внутрь фигуры; чему равна вероятность того, что брошенная наудачу монета пересечёт одну или две стороны фигуры? 2) на плоскость, разграфленную равноотстоящими параллельными прямыми, наудачу бросается игла; один игрок утверждает, что игла пересечёт одну из прямых, другой - что не пересечёт; определить вероятность выигрыша каждого игрока;3) тот же вопрос для случая, когда игла бросается на плоскость, разграфленную на квадраты. После Бюффона задачи на геометрические вероятности стали систематически включатся в монографии и учёбные пособия по теории вероятностей.
Заключение
Таким образом, рассмотрев теорию вероятности, ее историю и положения и возможности, можно утверждать, что возникновение данной теории не было случайным явлением вы науке, а было вызвано необходимостью дальнейшего развития технологии и кибернетики, поскольку существующее программное управление не может помочь человеку в создании таких кибернетических машин, которые, подобно человеку, будут мыслить самостоятельно. И именно теория вероятности может способствовать появлению искусственного разума. «Процессы управления , где бы они ни протекали - живых организмах, машинах или обществе,- происходят по одним и тем же законам», - провозгласила кибернетика. А значит, и те, пусть еще не познанные до конца, процессы, что протекают в голове человека и позволяют ему гибко приспосабливаться к изменяющейся обстановке, можно воспроизвести искусственно в сложных автоматических устройствах. Важнейшим понятием математики является понятие функции, но почти всегда речь шла об однозначной функции, у которой одному значению аргумента соответствует только одно значение функции и функциональная связь между ними четко определенная. Однако в реальности происходят случайные явления, и многие события имеют не определенный характер связей. Поиск закономерностей в случайных явлениях - это задача раздела математики теория вероятности. Теория вероятности является инструментом для изучения скрытых и неоднозначных связей различных явлений во многих отраслях науки, техники и экономики.
Теория вероятности позволяет достоверно вычислить колебания спроса, предложения, цен и других экономических показателей. Также теория вероятности является основой такой науки как статистика. На формулах этого раздела математики построено так называемая теория игр.
Список использованной литературы
1. Беляев Ю.К. и Носко В.П. «Основные понятия и задачи математической статистики.» - М.: Изд-во МГУ, ЧеРо, 2006.
2. В.Е. Гмурман «Теория вероятностей и математическая статистика. - М.: Высшая школа, 1997.
3. Корн Г.,Корн Т. «Справочник по математике для научных работников и инженеров. - СПБ:Издательство “Лань” 2003.
4. Пехелецкий И. Д. «Математика учебник для студентов.» - М. Академия, 2003.
5. Суходольский В.Г. «Лекции по высшей математике для гуманитариев.» - СПБ Издательство Санкт - Петербургского государственного университета. 2003;
6. Гнеденко Б. В. и Хинчин А. Я. « Элементарное введение в теорию вероятностей» 3 изд., М. - Л., 1952.
7. Гнеденко Б. В. «Курс теории вероятностей» 4 изд., М., 1965.
8. Феллер В. « Введение в теорию вероятностей и её приложение» (Дискретные распределения), пер. с англ., 2 изд., т. 1-2, М., 1967.
9. Бернштейн С. Н. « Теория вероятностей» 4 изд., М. - Л., 1946
Размещено на Allbest.ru
...Подобные документы
Изучение закономерностей массовых случайных явлений. Степень взаимосвязи теории вероятностей и статистики. Невозможные, возможные и достоверные события. Статистическое, классическое, геометрическое, аксиоматическое определение вероятности. Формула Бейеса.
реферат [114,7 K], добавлен 08.05.2011Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.
лекция [287,5 K], добавлен 02.04.2008Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.
контрольная работа [157,5 K], добавлен 04.02.2012Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат [175,1 K], добавлен 22.12.2013Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.
задача [104,1 K], добавлен 14.01.2011Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.
контрольная работа [69,3 K], добавлен 17.09.2013Бесконечное число возможных значений непрерывных случайных величин. Рассмотрение непрерывной случайной величины Х с функцией распределения F(x). Кривая, изображающая плотность вероятности. Определение вероятности попадания на участок a до b через f(x).
презентация [64,0 K], добавлен 01.11.2013Число возможных вариантов, благоприятствующих событию. Определение вероятности того что, проектируемое изделие будет стандартным. Расчет возможности, что студенты успешно выполнят работу по теории вероятности. Построение графика закона распределения.
контрольная работа [771,9 K], добавлен 23.12.2014Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.
курс лекций [1,1 M], добавлен 08.04.2011Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.
шпаргалка [777,8 K], добавлен 24.12.2010Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.
задача [37,9 K], добавлен 19.03.2011Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.
презентация [474,2 K], добавлен 17.08.2015Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.
контрольная работа [89,7 K], добавлен 07.09.2010Разработка методических аспектов обучения учащихся элементам теории вероятностей. Способы определения, последовательности изложения трактовок вероятности и формирование аксиоматического понятия. Задачи, решаемые при изучении геометрической вероятности.
курсовая работа [143,2 K], добавлен 03.07.2011Решение задач по определению вероятностных и числовых характеристик случайных явлений с обоснованием и анализом полученных результатов. Определение вероятности, среднего значения числа, надежности системы, функции распределения, математического ожидания.
курсовая работа [227,6 K], добавлен 06.12.2010Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.
курсовая работа [328,1 K], добавлен 18.11.2011Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.
презентация [1,3 M], добавлен 21.01.2014Классическое, статистическое и геометрическое определения вероятности. Дискретные случайные величины и законы их распределения. Числовые характеристики системы случайных величин. Законы равномерного и нормального распределения систем случайных величин.
дипломная работа [797,0 K], добавлен 25.02.2011Расчет наступления определенного события с использованием положений теории вероятности. Определение функции распределения дискретной случайной величины, среднеквадратичного отклонения. Нахождение эмпирической функции и построение полигона по выборке.
контрольная работа [35,1 K], добавлен 14.11.2010