Поиск последовательности. Построение полного потока в транспортной сети
Поиск члена последовательности рекуррентного соотношения. Особенности построения полного потока исследуемой транспортной сети. Построение таблицы истинности без предварительного упрощения функции. Упрощение логических выражений с помощью карты Карно.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.04.2015 |
Размер файла | 104,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования Российской Федерации Международный институт «ИНФО-Рутения»
РГГРУ
Контрольная работа
Дискретная математика
Тема контрольной работы
Вариант № 2
№17269 Минина Н.В.
г. Старая Русса
Контрольное задание №1
Задача №1. Дано одношаговое рекуррентное соотношение с начальным условием . Найти 7-й член последовательности .
Решение. Чтобы найти 7-й член последовательности по рекуррентному соотношению, нужно найти все предыдущие. Нулевой член последовательности задан. Чтобы найти первый элемент, поставим в правую часть рекуррентного соотношения. Такая подстановка соответствует присваиванию и можно найти и т.д. Следовательно:
.
Поставив , получим .
.
.
.
.
.
.
Ответ: .
Задача №2. Вычислить .
Решение.
.
Задача №3. Решить уравнение .
Решение.
.
После сокращения получаем
.
Найдем корни полученного уравнения:
.
Ответ: .
Задача №4. Сколькими способами можно выбрать трех дежурных из группы в 20 человек? рекуррентный транспортный истинность логический
Решение. Поскольку порядок в выборке из трех дежурных является не существенным, такая выборка будет неупорядоченной. Поэтому, количество способов, которыми можно выбрать трех дежурных из группы в 20 человек определится сочетанием из 20 человек по 3 дежурным. В результате получим
.
Ответ: 1140 способов.
Задача №5. Даны 2 множества: . Найти их:
a) Объединение .
Ответ: ;
b) Пересечение .
Ответ: ;
c) Разность .
Ответ :;
d) Симметричную разность .
Ответ: .
Контрольное задание №2
Задача №1. Построить полный поток в транспортной сети G, приведенной на рисунке (цифрами даны пропускные способности дуг).
Решение. Начинаем с нулевого потока, пологая .
При нулевом потоке отсутствуют насыщенные дуги. Выделим в G простую цепь и увеличим потоки по дугам на 3 до насыщения дуги (). В результате получим поток , содержащий одну насыщенную дугу.. Пометим ее крестиком и удалим из орграфа, который снова обозначим .
Выделим в простую цепь и увеличим потоки по дугам этой цепи на 3 до насыщения дуги (). В результате получим поток , величина которого равна и который содержит насыщенную дугу . Удалим эту насыщенную дугу из и оставшийся орграф обозначим .
Выделим в простую цепь и увеличим потоки по дугам этой цепи на 2 до насыщения дуги (). В результате получим поток , величина которого равна и который содержит насыщенную дугу . Удалим эту насыщенную дугу из и оставшийся орграф обозначим .
Выделим в простую цепь и увеличим потоки по дугам этой цепи на 3 до насыщения дуги (). В результате получим поток , величина которого равна и который содержит насыщенную дугу . Удалим эту насыщенную дугу из и оставшийся орграф обозначим .
Выделим в простую цепь и увеличим потоки по дугам этой цепи на 2 до насыщения дуги (). В результате получим поток , величина которого равна и который содержит насыщенную дугу . Удалим эту насыщенную дугу из и оставшийся орграф обозначим .
В оставшемся не существует пути их , который не содержал бы насыщенных дуг, т.е. поток является полным и его величина равна 13.
Задача №2. По данному логическому выражению построить таблицу истинности без предварительного упрощения функции.
.
Построим таблицу истинности по частям, предварительно построив таблицу истинности для каждой конъюнкции, а затем в последнем столбце запишем логическую сумму (дизъюнкцию) соответствующих значений трех конъюнкций .
А |
В |
С |
F |
|||||
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
|
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
|
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
|
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
|
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
|
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
|
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
|
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
Логические переменные А, В и С принимают всего значений, причем в таком порядке, что если перевести приведенные триады из двоичной системы в десятичную то получим числа от 0 до 7. В столбцах 5, 6 и 7 приведены элементарные конъюнкции, значения которых определяются перемножение соответствующих логических переменных. Значения дизъюнкций, приведенное в 8 столбце таблицы, определяется суммой соответствующих конъюнкций.
Задача №3. Функция задана десятичными эквивалентами единичных значений. Представить эту функцию в виде СДНФ или в виде СКНФ.
.
Поскольку в списке 14 чисел, т.е. 14 эквивалентов единичных значений, следовательно нулевых значений два (16-14=2). Поэтому по таблице истинности целесообразней строить СКНФ.
Построим таблицу истинности. В первом столбце укажем десятичные эквиваленты соответствующих наборов.
N |
F |
|||||||
0 |
0 |
0 |
0 |
0 |
0 |
|||
1 |
0 |
0 |
0 |
1 |
0 |
|||
2 |
0 |
0 |
1 |
0 |
0 |
|||
3 |
0 |
0 |
1 |
1 |
0 |
|||
4 |
0 |
1 |
0 |
0 |
0 |
|||
5 |
0 |
1 |
0 |
1 |
0 |
|||
6 |
0 |
1 |
1 |
0 |
0 |
|||
7 |
0 |
1 |
1 |
1 |
0 |
|||
8 |
1 |
0 |
0 |
0 |
0 |
|||
9 |
1 |
0 |
0 |
1 |
1 |
|||
10 |
1 |
0 |
1 |
0 |
1 |
|||
11 |
1 |
0 |
1 |
1 |
0 |
|||
* |
12 |
1 |
1 |
0 |
0 |
0 |
||
* |
13 |
1 |
1 |
0 |
1 |
0 |
||
14 |
1 |
1 |
1 |
0 |
1 |
|||
15 |
1 |
1 |
1 |
1 |
1 |
В таблице звездочками отмечены строчки, в которых расположены наборы значений переменных, на которых функция равна нулю. Справа напротив этих строк показаны полные элементарные функции, которые на соответствующих наборах равны нулю. СКНФ находится как конъюнкция этих дизъюнкций и будет иметь вид:
.
Задача №4. Упростить логические выражения с помощью карты Карно.
.
Известно, что конъюнкции соответствует пересечение областей карты Карно, соответствующих сомножителям, а дизъюнкции соответствует объединение областей, соответствующих слагаемым. Конъюнкции второго ранга на карте Карно соответствует 4 клеточки. Затененная область на рис.1,2,3 соответствует конъюнкциям соответственно. На рис.4 показано пересечение областей, соответствующих множителям . В соответствующих клетках пересечения областей стоят единицы и штриховкой показана область клеток для переменной .
Клетки имеющие затенение и штриховку одновременно соответствуют исходной функции. Объединив эти три единицы в две пары, получим представление исходной функции в виде дизъюнкции двух конъюнкций третьего ранга
.
Размещено на Allbest.ru
...Подобные документы
Определение количества способов, которыми можно выбрать трех дежурных из группы в 20 человек. Построение таблицы истинности без предварительного упрощения функции по данному логическому выражению. Упрощение логических выражений с помощью карты Карно.
контрольная работа [81,1 K], добавлен 25.08.2013Расчет производной функции. Раскрытие неопределенности и поиск пределов. Проведение полного исследования функции и построение ее графика. Поиск интервалов возрастания, убывания и экстремумов. Решение дифференциальных уравнений. Расчет вероятности события.
контрольная работа [117,5 K], добавлен 27.08.2013Расчет частных производных первого порядка. Поиск и построение области определения функции. Расчет полного дифференциала. Исследование функции на экстремум. Поиск наибольшего и наименьшего значения функции в замкнутой области. Производные второго порядка.
контрольная работа [204,5 K], добавлен 06.05.2012Построение диаграммы псевдографа, матрицы инцидентности и матрицы соседства вершин. Восстановление дерева по вектору с помощью алгоритма Прюфера. Построение таблицы истинности для функции и совершенной конъюнктивной и дизъюнктивной нормальной форм.
контрольная работа [181,9 K], добавлен 25.09.2013Построение таблицы истинности. Доказательство истинности заключения путём построения дерева доказательства или методом резолюции. Выполнение различных бинарных операций. Построение графа вывода пустой резольвенты. Основные правила исчисления предикатов.
курсовая работа [50,7 K], добавлен 28.05.2015Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.
контрольная работа [1,1 M], добавлен 26.03.2014Законы алгебры Буля и их применение для преобразования логических выражений. Расчет информационной емкости документов предметной области. Построение инфологической, реляционной и даталогической моделей. Применение методов поиска и сортировки данных.
курсовая работа [261,7 K], добавлен 05.01.2013Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.
контрольная работа [114,0 K], добавлен 17.12.2010Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.
контрольная работа [463,0 K], добавлен 17.05.2015Составление платежной матрицы, поиск нижней и верхней чисты цены игры, максиминной и минимаксной стратегии игроков. Упрощение платежной матрицы. Решение матричной игры с помощью сведения к задаче линейного программирования и надстройки "Поиск решения".
контрольная работа [1010,3 K], добавлен 10.11.2014Поиск нулей функции - исследование и построение различных функций зависимостей. Исследование непрерывных процессов. Метод простой итерации. Итерационный процесс Ньютона, аналитическое задание системы уравнений и локализация области нахождения корня.
реферат [54,1 K], добавлен 08.08.2009Прогрессии многочленов и их матриц. Описание вертикальных рядов. Построение алгебраической трапеции из ограниченного количества чисел ряда последовательности. Свободные члены выражений. Особенности разрешимости Диофантовых уравнений. Расшифровка формул.
курсовая работа [654,7 K], добавлен 31.12.2015Определение возвратной последовательности. Формулы вычисления любого члена из нее. Характеристическое уравнение для возвратного уравнения. Исчисление конечных разностей. Обобщение произвольных возвратных последовательностей. Базис возвратного уравнения.
курсовая работа [67,8 K], добавлен 07.10.2009Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.
лабораторная работа [85,5 K], добавлен 09.01.2009Вычисление пределов и устранение неопределенности. Поиск производных функций. Вычисление приближенного значения 8.051/3. Определение полного дифференциала функции z=3sin(2x+3y). Формула интегрирования по частям. Решение линейного однородного уравнения.
контрольная работа [439,6 K], добавлен 25.03.2014История возникновения булевой алгебры, разработка системы исчисления высказываний. Методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Дизъюнкция, конъюнкция и отрицание, таблицы истинности.
презентация [1,9 M], добавлен 22.02.2014Составление математической модели задачи. Приведение ее к стандартной транспортной задаче с балансом запасов и потребностей. Построение начального опорного плана задачи методом минимального элемента, решение методом потенциалов. Анализ результатов.
задача [58,6 K], добавлен 16.02.2016Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.
курс лекций [4,0 M], добавлен 18.12.2009Число как одно из основных понятий математики. Виды чисел, абсолютная и переменная величины. Область определения функции, четные и нечетные функции. Построение графиков функций. Пределы последовательности и пределы функции. Непрерывность функции.
учебное пособие [895,7 K], добавлен 09.03.2009Понятие производной, ее геометрический и физический смысл, дифференциал. Исследование функций и построение графиков. Разложение на множители, упрощение выражений. Решение неравенств, систем уравнений и доказательство тождеств. Вычисление пределов функции.
контрольная работа [565,5 K], добавлен 16.11.2010