Предел функции в точке

Определение предела функции f(x) в точке x0 по Гейне и Коши. Основные свойства пределов. Понятие предела функции в точке. Основные теоремы о пределах, признаки их существования. Определение предела частного и произведения двух функций, сложной функции.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 27.04.2015
Размер файла 40,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Предел функции в точке

По Гейне: число А называется, если для любой последовательность значений аргумента ({xn}>x0) соответствующая последовательность значений функции f(x) стремится к числу А.

По Коши: число А называется пределом функции f(x) в точке x0 если для любого >0, найдется такое число >0, что при всех x из условия будет выполняться неравенство (значение функции попадает в окрестность точки А)

Свойства пределов.

1)Если функция имеет предел, то только один.

2) lim C=C, где С - постоянная величина

3) предел произведения равен произведению пределов

4) константы можно выносить за знак предела

5)

Предел функции в точке

Определение. Число называется пределом функции при стремящемся к (или в точке ), если для любого, даже сколько угодно малого положительного числа , найдется такое положительное число (зависящее от ), что для всех , не равных и удовлетворяющих условию , выполняется неравенство .

Это предел функции обозначается: или при .

Основные теоремы о пределах. Признаки существования предела

Пусть и - функции, для которых существуют пределы при (): , .

Сформулируем основные теоремы о пределах:

Функция не может иметь более одного предела.

Предположим противное, т.е. что функция имеет 2 предела А и D, . Тогда на основании теоремы о связи бесконечно малых величин с пределами функции: , , где и - бесконечно малые величины при (). Вычитая почленно эти равенства, получим: , откуда . Это равенство невозможно, т.к. на основании свойства 1 бесконечно малых это величина бесконечно малая. Следовательно, предположение о существовании второго предела неверно.

Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций, т.е.

.

Предел произведения конечного числа функций равен произведению пределов этих функций, т.е.

.

По условию и , следовательно, на основании теоремы о связи бесконечно малых величин с пределами функции:

, ,

где и - бесконечно малые величины при (). Перемножая почленно оба равенства, получим:

.

предел функция точка

На основании свойств бесконечно малых последние три слагаемые представляют величину, бесконечно малую при ().

Итак, функция представляет сумму постоянного числа и бесконечного малой . На основании обратной теоремы о связи бесконечно малых с пределами функции это означает, что

.

В частности, постоянный множитель можно выносить за знак предела, т.е.

.

Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен нулю), т.е.

, .

Если , , то предел сложной функции

Если в некоторой окрестности точки (или при достаточно больших ) , то

.

Размещено на Allbest.ru

...

Подобные документы

  • Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация [292,4 K], добавлен 14.11.2014

  • Основные свойства функций, для которых существуют пределы. Понятие бесконечно малых величин и их суммы. Предел алгебраической суммы, разности и произведения конечного числа функций. Предел частного двух функций. Нахождение предела сложной функции.

    презентация [83,4 K], добавлен 21.09.2013

  • Понятие предела функции и основные требования, предъявляемые к нему, геометрический смысл. Методика определения данной геометрической категории в заданной точке при различных условиях. Вычисление ординат графиков. Возрастание по абсолютной величине.

    презентация [902,2 K], добавлен 21.09.2013

  • Применение второго замечательного предела для раскрытия неопределенности. Точки разрыва непрерывной функции 1-го и 2-го рода. Условия ее непрерывности в точке, интервале и на отрезке. Теоремы Вейерштрасса и Больцано-Коши. Обращение функции в ноль.

    презентация [222,8 K], добавлен 20.03.2014

  • Определение пределов функции с помощью Mathcad. Доказать, что предел данной функции в указанной точке не существует. Построение ее графика в окрестности указанной точки. Вычисление производных функции по определению в произвольной или фиксированной точке.

    лабораторная работа [718,5 K], добавлен 25.12.2011

  • Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.

    презентация [314,4 K], добавлен 14.11.2014

  • Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.

    презентация [137,0 K], добавлен 25.01.2013

  • Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.

    контрольная работа [114,0 K], добавлен 17.12.2010

  • Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.

    курсовая работа [836,0 K], добавлен 09.12.2013

  • Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.

    контрольная работа [233,2 K], добавлен 28.03.2014

  • Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.

    контрольная работа [249,8 K], добавлен 28.03.2014

  • Определение корня первого и второго многочлена, вычисление предела функции. Применение правила Лопиталя (предел отношения функций равен пределу отношения их производных). Пример использования замечательного предела, который применяется в виде равенства.

    контрольная работа [95,5 K], добавлен 19.03.2015

  • Направление, задаваемое единичным вектором. Предел отношения приращения функции в направлении к величине перемещения. Скалярное произведение в координатах. Градиент функции в точке. Направление максимальной скорости изменения функции в данной точке.

    презентация [91,0 K], добавлен 17.09.2013

  • История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство теоремы Штольца. Практическое применение предела последовательности в экономике, геометрии и физике.

    курсовая работа [407,2 K], добавлен 16.12.2013

  • Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.

    курсовая работа [1,3 M], добавлен 30.12.2021

  • Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

    контрольная работа [61,5 K], добавлен 14.01.2015

  • Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.

    курсовая работа [612,2 K], добавлен 01.06.2014

  • Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

    задача [484,3 K], добавлен 02.10.2009

  • Сущность предела функции, ее производной и дифференциала. Основные теоремы о пределах и методы их математического вычисления. Производная, ее физический и геометрический смысл. Связь непрерывности и дифференцируемости, основные правила дифференцирования.

    презентация [128,4 K], добавлен 24.06.2012

  • Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.

    презентация [917,8 K], добавлен 17.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.