Жизнь Н.И. Лобачевского и его научная деятельность

Детство и факторы, повлиявшие на формирование интереса Н.И. Лобачевского к неевклидовой геометрии. Теория об эллиптическом движении тел и другие научные исследования. Сжатое изложение основ геометрии со строгим доказательством теорем о параллельных.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 08.05.2015
Размер файла 575,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ухтинский государственный технический университет, г. Ухта

Жизнь Н.И. Лобачевского и его научная деятельность

“Иногда человеку воздают должное, даже если он не брал в долг.”

Николай Иванович Лобачевский родился в 1792 году в Нижнем Новгороде. У Николая Ивановича были старший и младший братья. Отец Николая - Иван Максимович Лобачевский работал чиновником в Нижнем Новгороде. Жена его - Прасковья Александровна была дочерью бедствующих мещан, больше о ней ничего неизвестно. Родители Николая поженились в молодом возрасте, обоим ещё не было восемнадцати на момент свадьбы. Вскоре после переезда отец будущего великого учёного умирает, в возрасте 40 лет, и оставляет свою семью в трудном финансовом положении. Однако, воспитывались братья Лобачевские в доме землемера Сергея Степановича Шебаршина, и не бедствовали. В 1802 году Прасковья Александровна отдаёт сыновей в Казанскую гимназию, на казённое содержание. Поначалу программа Университета мало чем отличалась от гимназийской, но ситуация изменилась к лучшему в 1808 году с приездом видных иностранных учёных Каспара Реннера, профессора математики, Мартина Бартельса, тоже профессора математики, являвшегося учителем и другом Карла Гаусса. Последний и привил Лобачевскому интерес к геометрии. Уже в 19 лет Николай Иванович получил степень магистра, и был оставлен при университете для подготовки к получению профессорского звания. В этом же году они вместе с М. Бартельсом изучают углублённо классические труды Гаусса и Лапласа: ”Теорию Чисел” и первые тома ”Небесной механики”. Изучение этих работ подтолкнуло Лобачевского к началу собственных исследований. В 1811 году он публикует ”Теорию об эллиптическом движении тел” и в 1813 - ”О разрешении алгебраического уравнения xm ? 1 = 0”. В 1814 году начинает преподавательскую деятельность.

Неевклидова Геометрия - главный труд жизни Лобачевского, научный подвиг, оказал огромное влияние на дальнейшее развитие математики и математического мышления. Первый труд, относящийся к этой теме Лобачевский опубликовал уже будучи ректором Казанского Университета, в 1826 году ”Сжатое изложение основ геометрии со строгим доказательством теорем о параллельных.”. Лобачевский был первым учёным, который представил общественности труды на эту тему. Другие учёные тоже занимались этой проблемой, но Лобачевский внёс наибольший вклад в её решение, поэтому, созданная им геометрия носит его имя. Также, среди опубликованных работ учёного: “О началах геометрии” (1829-1830), “Воображаемая геометрия “(1835), “Применение воображаемой геометрии к некоторым интегралам” (1836), “Новые начала геометрии с полной теорией параллельных” (1835-1838), “Геометрические исследования по теории параллельных линий” (1840). В основе математической дисциплины лежит система постулатов и аксиом. Геометрия Лобачевского не исключение. Лобачевский принимает все аксиомы и постулаты, предложенные геометрией Евклида и не зависящие от V постулата, а V постулат заменяет своим: ”На плоскости через точку, не лежащую на прямой можно провести более одной прямой, не пересекающей данную”.

Две граничные прямые xx' и yy' (рис. 1) не пересекают прямой R и называются параллельными ей в точке P.

· Все прямые, находящиеся внутри угла xPy пересекают прямую R. PB - перпендикуляр к прямой R.

· Угол называется углом параллельности.

· Прямые, находящиеся внутри углов xPy' и yPx' не пересекают прямую R- называются расходящимися с прямой R.

В этом состоит главное отличие геометрии Лобачевского от евклидовой геометрии. Важно также отметить, что в геометрии Лобачевского:

1) Сумма углов треугольника всегда меньше 2d (двух прямых)

2) Не существует подобных фигур.

3) Единица длины задаётся некоторым геометрическим построением, то есть само пространство своими геометрическими свойствами определяет ту или иную единицу длины.

4) Задаётся направление параллельности.

Пространство, в котором предполагается выполнение аксиомы Лобачевского называется пространством Лобачевского. Взаимное расположение прямых и плоскостей в пространстве характеризуется при помощи конуса параллельности, являющегося аналогом понятия угла параллельности. Пусть дана плоскость Альфа и не лежащая на ней точка P (рис.2), PP' - перпендикуляр к Альфа. Pb - прямая, параллельная плоскости Альфа и P'B' - её проекция на эту плоскость. Тогда угол bPP' есть угол параллельности в точке P относительно P'B'. Будем вращать прямую Pb вокруг перпендикуляра PP', и тогда Pb опишет коническую поверхность с вершиной в точке P. Эта поверхность называется конусом параллельности. Таким образом, все образующие этого конуса - параллельны плоскости альфа. Всякая прямая, проходящая через точку P внутри конуса пересекает плоскость альфа, проходящая вне конуса - расходится с альфа.

· Всякая плоскость, пересекающая конус по двум образующим пересекает Альфа.

· Всякая плоскость, проходящая по одной образующей конуса параллельна Альфа.

· Всякая плоскость, пересекающая лишь вершину конуса - называется расходящейся с плоскостью Альфа.

Впервые реализацию геометрии Лобачевского на поверхностях установил итальянский математик Бельтрами в 1868 г. (рис. 3). Он заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример которых представляет псевдосфера. Однако здесь даётся только локальная интерпретация геометрии, то есть на ограниченном участке, а не на всей плоскости Лобачевского.

Спустя три года, в 1871 году, немецкий математик Клейн пришёл к другой, полноценной модели (рис. 4). Плоскостью в ней служит внутренность круга, прямой - хорда, исключая концы, точкой - точка внутри круга. Принадлежность между ними понимается в обычном евклидовом смысле, однако, V постулат Евклида здесь уже не выполняется, а выполняется именно аксиома Лобачевского: через точку P проходит бесконечно много прямых, не пересекающих прямую a. Также, выполняются все следствия аксиомы.

В 1882 г., была представлена ещё одна модель геометрии Лобачевского, французским математиком Пуанкаре (рис. 5). Роль плоскости Лобачевского играет открытая полуплоскость P, роль прямых выполняют содержащиеся в ней полуокружности, с центрами на ограничивающей прямой p, и лучи, перпендикулярные этой прямой. Точка “прямой” служит началом двух лучей, двух дуг полуокружностей (с исключенными концами). Ограничивающая прямая также исключена. Углом назовём фигуру из двух лучей с общим началом, не содержащихся в одной прямой. Полупрямые, перпендикулярные граничной прямой являются пределами рассмотренных полуокружностей (см. рис. б). Когда центр полуокружности удаляется по ограничивающей прямой, а полуокружность проходит через точку, то в пределе она “распрямляется” и становится также полупрямой. Поэтому в качестве прямых в этой модели рассматриваются полуокружности бесконечного радиуса. Все аксиомы евклидовой геометрии здесь выполняются, кроме аксиомы параллельных. Тем самым в этой модели выполняется геометрия Лобачевского. Можно строить аналитическую модель геометрии, представляя точки координатами и выражая расстояние формулой в координатах. Такую модель геометрии Лобачевского дал немецкий математик Риман в качестве частного случая общей определенной им геометрии, называемой теперь римановой.

Научные идеи Лобачевского не были поняты большинством современников, и после публикации первой работы по ”воображаемой геометрии” Николай Иванович подвергся жесточайшей травле на родине. Единственным прижизненным признанием его научных заслуг стало избрание в Гёттингенское королевское научное общество, благодаря рекомендациям Гаусса. Но, тем не менее, Лобачевский не сдавался, и до конца жизни верил, что торжество его идей неминуемо. В 1855 году он, потеряв зрение из-за тяжёлых переживаний и постоянного умственного напряжения, диктует свое последнее произведение ”Пангеометрия”. В следующем году он умер. Однако, после смерти Лобачевского, его идеи привлекли внимание научных кругов, и послужили могучим стимулом к пересмотру взглядов на основания геометрии. Его геометрия нашла применение в общей и специальной теории относительности, в теории чисел (в её геометрических методах). Геометрия Лобачевского имеет также и философское значение, так как расширяет наши представления об устройстве мира и пространства. На данный момент имеется немало научных сочинений, посвящённых геометрии Лобачевского как в отечественной литературе, так и в зарубежной. Изучение геометрии Лобачевского входит в обязательную часть программы математических отделений большинства наших ВУЗов и всех педагогических институтов - ознакомление с основами этой геометрической системы считается необходимой частью подготовки будущего учителя средней школы. В школьных математических кружках тоже широко культивируются занятия геометрией Лобачевского.

геометрия эллиптический лобачевский

Список использованной литературы

1) Геометрия Лобачевского [Электронный ресурс]:

http://en.wikipedia.org/wiki/Lobachevskian_geometry

2) Геометрия Лобачевского [Электронный ресурс]:

http://geom.kgsu.ru/index.php

3) Лобачевский, Николай Иванович [Электронный ресурс]:

http://en.wikipedia.org/wiki/Nikolai_Lobachevsky

4) Модель Пуанкаре [Электронный ресурс]:

http://geometrie.ru/site/lobachevskiy/m1.htm

5) Широков П. А. Краткий очерк основ геометрии Лобачевского [текст]: /П. А. Широков - 2-е издание - М.: Наука, 1983 - 80 с.

Размещено на Allbest.ru

...

Подобные документы

  • Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

    реферат [319,1 K], добавлен 06.03.2009

  • Биография Н.И. Лобачевского. Деятельность Лобачевского по организации печатного университетского органа и его попытки основать при университете Научное общество. История признания геометрии Н.И. Лобачевского в России. Появление неевклидовой геометрии.

    дипломная работа [1,2 M], добавлен 14.09.2011

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа [4,1 M], добавлен 15.03.2011

  • Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.

    дипломная работа [1,8 M], добавлен 21.08.2011

  • Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.

    дипломная работа [4,4 M], добавлен 05.03.2011

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.

    дипломная работа [1,3 M], добавлен 10.09.2009

  • Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.

    курсовая работа [629,3 K], добавлен 29.06.2013

  • Биография русского ученого Н.И. Лобачевского. Система аксиом Гильберта. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому. Понятие о сферической геометрии. Доказательство теорем на различных моделях.

    реферат [564,5 K], добавлен 12.11.2010

  • Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.

    презентация [1,9 M], добавлен 06.05.2010

  • Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.

    дипломная работа [245,5 K], добавлен 13.02.2010

  • Биография Николая Ивановича Лобачевского - выдающегося российского математика. Главные достижения Н.И. Лобачевского - доказательство того, что существует более чем одна "истинная" геометрия, геометрические исследования по теории параллельных линий.

    презентация [2,9 M], добавлен 19.03.2012

  • Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.

    презентация [872,8 K], добавлен 24.02.2011

  • Научно-методические достоинства учебного пособия по геометрии Погорелова. Анализ недостатков учебника "Геометрия 7-9". Структура основных взаимосвязей в системе определений и теорем в курсе геометрии. Подготовка учителя к доказательству теорем на уроке.

    дипломная работа [321,5 K], добавлен 11.01.2011

  • Геометрия Евклида — теория, основанная на системе аксиом, изложенной в "Началах". Гиперболическая геометрия Лобачевского, ее применение в математике и физике. Реализация геометрии Римана на поверхностях с постоянной положительной гауссовской кривизной.

    презентация [685,4 K], добавлен 12.09.2013

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат [38,5 K], добавлен 16.01.2010

  • Анализ проявлений недоказуемости пятого постулата Евклида. Общая характеристика и обоснование основных идей неевклидовской геометрии в работах Д. Саккери, И.Г. Ламберта, Я. Бояи, Ф. Швейкарта, Ф.А. Тауринуса, К.Ф. Гаусса, Н.И. Лобачевского, Я. Больяйя.

    реферат [29,4 K], добавлен 21.09.2010

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа [192,3 K], добавлен 24.11.2009

  • Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.

    презентация [527,9 K], добавлен 23.03.2011

  • Геометрия как научная дисциплина, причины и предпосылки, история и основные этапы ее возникновения и развития. Евклид как основатель геометрии, его вклад в развитие новой науки, характеристика, содержание ее главных разделов - планиметрии и стереометрии.

    презентация [55,3 K], добавлен 28.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.