Правильные многогранники в природе

Изучение понятия правильного многогранника — выпуклого многогранника, состоящего из одинаковых правильных многоугольников и обладающего пространственной симметрией. Исследование нахождения правильных многогранников в природе: икосаэдра, тетраэдра.

Рубрика Математика
Вид творческая работа
Язык русский
Дата добавления 12.05.2015
Размер файла 252,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Псковский государственный университет»

Творческая работа

На тему: «Правильные многогранники в природе»

Дисциплина: «Математика и гармония окружающего мира»

Выполнила студентка II курса

Физико-математического факультета

Алексеева Надежда

Псков 2015

Введение

Цель работы:

1. Изучить виды и свойства правильных многогранников;

2. Исследовать нахождение и применение правильных многогранников в природе.

3. Расширить знания о правильных многогранниках у себя и у одногруппников.

Задача работы:

1. Изучить литературу по данной теме;

2. Показать нахождение правильных многогранников в природе.

1. Правильные многогранники

Правильный многогранник -- это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией.

Рассмотрим возможные правильные многогранники и прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники (Приложение № 1,рис. 1,а). В каждой ее вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также тетраэдром, что в переводе с греческого языка означает четырехгранник.

Многогранник, у которого гранями являются правильные треугольники, и в каждой вершине сходится четыре грани, а также у которого поверхность состоит из восьми правильных треугольников, называется октаэдром (Приложение №1, рис. 1,в).

Многогранник, в каждой вершине которого сходится пять правильных треугольников и его поверхность состоит из двадцати правильных треугольников, называется икосаэдром (Приложение №1,рис. 1,г).

Заметим, что поскольку в вершинах выпуклого многогранника не может сходиться более пяти правильных треугольников, то других правильных многогранников, гранями которых являются правильные треугольники, не существует.

Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба других правильных многогранников, у которых гранями являются квадраты, не существует. Куб имеет шесть граней и поэтому называется также гексаэдром (Приложение №1, рис.1,б).

Многогранник, гранями которого являются правильные пятиугольники, и в каждой вершине сходится три грани и его поверхность состоит из двенадцати правильных пятиугольников, называется додекаэдром (Приложение №1,рис.1,д).

Поскольку в вершинах выпуклого многогранника не могут сходиться правильные многоугольники с числом сторон больше пяти, то, используя теорему Коши о жесткости выпуклого многогранника, получаем, что других правильных многогранников не существует, и таким образом, имеется только пять правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

Теорема Коши о многогранниках:

Два замкнутых выпуклых многогранника конгруэнтны, если между их гранями, рёбрами и вершинами имеется сохраняющее инцидентность взаимно однозначное соответствие, причём соответствующие грани многогранников конгруэнтны.

1. Конгруэнтность (лат. congruens, род. падеж congruentis -- «соразмерный», «соответствующий») -- отношение эквивалентности на множестве геометрических фигур (отрезков, углов и т. д.).

2. Инцидентность -- геометрический термин, употребляемый для обозначения отношения принадлежности (связи, соединения) между основными объектами геометрии: точками, прямыми, плоскостями.

Свойства правильных многогранников:

· все плоские углы равны;

· все двугранные углы, содержащие две грани с общим ребром, равны;

· все рёбра равны;

· все многогранные углы равны;

· в каждой вершине сходится одно и то же число рёбер;

· все его вершины одинаково удалены от центра правильного многогранника.

2. Исторические сведения

Правильные многогранники с древних времен привлекали к себе внимание ученых, строителей, архитекторов и многих других. Их поражала красота, совершенство, гармония этих многогранников.

Правильные многогранники получили название платоновых тел, так как они занимали важное место в философской концепции Платона об устройстве мироздания.

Четыре многогранника олицетворяли в ней четыре сущности, или стихии.

Тетраэдр символизировал Огонь, так как его вершина устремлена вверх; икосаэдр - Воду, так как он самый «обтекаемый» многогранник; куб - Землю, как самый «устойчивый» многогранник; октаэдр - Воздух, как самый «воздушный» многогранник. Пятый многогранник, додекаэдр, воплощал в себе «все сущее», «вселенский разум», символизировал все мироздание и считался главной геометрической фигурой мироздания.

Названия многогранников тоже имеют древнегреческое происхождение. В переводе с греческого: "Тетра" - четыре; "Гекса" - шесть; "Окто" - восемь; "Икоси" - двадцать, "Додека" - двенадцать. "Эдра" - грань. Подробно описал свойства правильных многогранников древнегреческий ученый Платон. Правильным многогранникам посвящена последняя XIII книга знаменитых "Начал" Евклида.

В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы, архитекторы, художники. Леонардо да Винчи, например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал изображениями правильных и полуправильных многогранников книгу своего друга монаха Луки Пачоли (1445-1514) "О божественной пропорции".

Другим знаменитым художником эпохи Возрождения, также увлекавшимся геометрией, был А. Дюрер. В его известной гравюре "Меланхолия" на переднем плане изображен додекаэдр. В 1525 году Дюрер написал трактат, в котором представил пять правильных многогранников, поверхности которых служат хорошими моделями перспективы.

Иоганн Кеплер (1571-1630) в своей работе "Тайна мироздания" в 1596 году, используя правильные многогранники, вывел принцип, которому подчиняются формы и размеры орбит планет Солнечной системы. Геометрия Солнечной системы, по Кеплеру, заключалась в следующем: "Земля (имеется в виду орбита Земли) есть мера всех орбит. Вокруг сферы Земли опишем додекаэдр. Описанная вокруг додекаэдра сфера есть сфера Марса. Вокруг сферы Марса опишем тетраэдр. Описанная вокруг тетраэдра сфера есть сфера Юпитера. Вокруг сферы Юпитера опишем куб. Описанная вокруг куба сфера есть сфера Сатурна. В сферу Земли вложим икосаэдр. Вписанная в него сфера есть сфера Венеры. В сферу Венеры вложим октаэдр. Вписанная в него сфера есть сфера Меркурия". Такая модель Солнечной системы получила название "Космического кубка" Кеплера (Приложение №1, рис. 2).

3. Правильные многогранники в природе

Живая природа.

Правильные многогранники - это самые «выгодные» фигуры. И природа этим широко пользуется. Кристаллы некоторых, знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов имеют форму октаэдра, кристалл сернистого колчедана FeS - додекаэдра, сурьмянистый сернокислый натрий - тетраэдра, бор - икосаэдра. Правильные многогранники определяют форму кристаллических решеток многих химических веществ.

Сейчас уже доказано, что процесс формирования человеческого зародыша из яйцеклетки осуществляется путем ее деления по «бинарному» закону, то есть сначала яйцеклетка превращается в две клетки. Затем на стадии четырех клеток зародыш принимает форму тетраэдра, а на стадии восьми клеток он принимает форму двух сцепленных тетраэдров (звездный тетраэдр или куб), (Приложение №1, рис.3). Из двух кубов на стадии шестнадцати клеток формируется сфера, а из сферы на определенном этапе деления образуется тор из 512 клеток. Планта Земля и ее магнитное поле тоже представляет собой тор.

Квазикристаллы Дана Шехтмана.

12 ноября 1984 г. в небольшой статье, опубликованной в авторитетном журнале «Physical Review Letters» израильским физиком Даном Шехтманом, было предъявлено экспериментальное доказательство существования металлического сплава с исключительными свойствами. При исследовании методами электронной дифракции этот сплав проявил все признаки кристалла. Его дифракционная картина составлена из ярких и регулярно расположенных точек, совсем как у кристалла. Однако эта картина характеризуется наличием «икосаэдрической» или «пентангональной» симметрии, строго запрещенной в кристалле из геометрических соображений. Такие необычные сплавы были названы квазикристаллами. Менее чем за год были открыты многие другие сплавы подобного типа. Их было так много, что квазикристаллическое состояние оказалось намного более распространенным, чем это можно было бы представить.

Что же такое квазикристалл? Каковы его свойства и как его можно описать? Как упоминалось выше, согласно основному закону кристаллографии на структуру кристалла накладываются строгие ограничения. Согласно классическим представлениям, кристалл составляется из единственной ячейки, которая должна плотно (грань к грани) «устилать» всю плоскость без каких-либо ограничений.

Как известно, плотное заполнение плоскости может быть осуществлено с помощью треугольников, квадратов и шестиугольников. С помощью пятиугольников (пентагонов) такое заполнение невозможно.

Таковы были каноны традиционной кристаллографии, которые существовали до открытия необычного сплава алюминия и марганца, названного квазикристаллом. Такой сплав образуется при сверхбыстром охлаждении расплава со скоростью 106К в секунду. При этом при дифракционном исследовании такого сплава на экране упорядоченная картина, характерная для симметрии икосаэдра, обладающего знаменитыми запрещенными осями симметрии 5-го порядка.

Несколько научных групп во всем мире на протяжении нескольких последующих лет изучили этот необычный сплав посредством электронной микроскопии высокого разрешения. Все они подтвердили идеальную однородность вещества, в котором симметрия 5-го порядка сохранялась в макроскопических областях с размерами, близкими к размерам атомов (несколько десятков нанометров).

Согласно современным воззрениям разработана следующая модель получения кристаллической структуры квазикристалла. В основе этой модели лежит понятие «базового элемента». Согласно этой модели, внутренний икосаэдр из атомов алюминия окружен внешним икосаэдром из атомов марганца. Икосаэдры связаны октаэдрами из атомов марганца. В «базовом элементе» имеется 42 атома алюминия и 12 атомов марганца. В процессе затвердевания происходит быстрое формирование «базовых элементов», которые быстро соединяются между собой жесткими октаэдрическими «мостиками». Напомним, что гранями икосаэдра являются равносторонние треугольники. Чтобы образовался октаэдрический мостик из марганца, необходимо, чтобы два таких треугольника (по одному в каждой ячейку) приблизились достаточно близко друг к другу и выстроились параллельно. В результате такого физического процесса и образуется квазикристалличсеская структура с «икосаэдрической» симметрией.

В последние десятилетия было открыто много типов квазикристаллических сплавов. Кроме имеющих «икосаэдрическую» симметрию (5-го порядка) существуют также сплавы с декагональной симметрией (10-го порядка) и додекагональной симметрией (12-го порядка). Физические свойства квазикристаллов начали исследовать лишь недавно.

Как отмечается в упомянутой выше статье Гратиа, «механическая прочность квазикристаллических сплавов резко возрастает; отсутствие периодичности приводит к замедлению распространения дислокаций по сравнению с обычными металлами … Это свойство имеет большое прикладное значение: применение икосаэдрической фазы позволит получить легкие и очень прочные сплавы внедрением мелких частиц квазикристаллов в алюминиевую матрицу».

Тетраэдр в природе.

1. Фосфор

Более трехсот лет назад, когда гамбургский алхимик Геннинг Бранд открыл новый элемент - фосфор. Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень, с помощью которых старики молодеют, больные выздоравливают, а неблагородные металлы превращаются в золото. В ходе одного из опытов он выпарил мочу, смешал остаток с углем, песком и продолжил выпаривание. Вскоре в реторте образовалось вещество, светившееся в темноте. Кристаллы белого фосфора образованы молекулами Р4. Такая молекула имеет вид тетраэдра.

2. Фосфорноватистая кислота Н3РО2.

Ее молекула имеет форму тетраэдра с атомом фосфора в центре, в вершинах тетраэдра находятся два атома водорода, атом кислорода и гидроксогруппа.

3. Метан.

Кристаллическая решётка метана имеет форму тетраэдра. Метан горит бесцветным пламенем. С воздухом образует взрывоопасные смеси. Используется как топливо.

4. Вода.

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода “оголяются”. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.

5. Аммиак.

Каждая молекула аммиака имеет не поделённую пару электронов у атома азота. Орбитали атомов азота, содержащие не поделённые пары электронов, перекрываются с sp3-гибридными орбиталями цинка(II), образуя тетраэдрический комплексный катион тетраамминцинка(II) [Zn(NH3)4]2+.

6. Алмаз

Элементарная ячейка кристалла алмаза представляет собой тетраэдр, в центре и четырех вершинах которого расположены атомы углерода. Атомы, расположенные в вершинах тетраэдра, образуют центр нового тетраэдра и, таким образом, также окружены каждый еще четырьмя атомами и т.д. Все атомы углерода в кристаллической решетке расположены на одинаковом расстоянии (154 пм) друг от друга.

Куб (гексаэдр) в природе.

Из курса физики известно, что вещества могут существовать в трёх агрегатных состояниях: твёрдом, жидком, газообразном. Они образуют кристаллические решётки.

Кристаллические решётки веществ - это упорядоченное расположение частиц (атомов, молекул, ионов) в строго определённых точках пространства. Точки размещения частиц называют узлами кристаллической решётки.

В зависимости от типа частиц, расположенных в узлах кристаллической решётки, и характера связи между ними различают 4 типа кристаллических решёток: ионные, атомные, молекулярные, металлические.

ИОННЫЕ

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью. Ионные кристаллические решётки имеют соли, некоторые оксиды и гидроксиды металлов. Рассмотрим строение кристалла поваренной соли, в узлах которого находятся ионы хлора и натрия. Связи между ионами в кристалле очень прочные и устойчивые. Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

Форму куба имеют кристаллические решётки многих металлов (Li, Na, Cr, Pb, Al, Au, и другие).

МОЛЕКУЛЯРНЫЕ

Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в них ковалентные, как полярные, так и неполярные. Связи в молекулах прочные, но между молекулами связи не прочные. Ниже представлена кристаллическая решётка I2. Вещества с МКР имеют малую твёрдость, плавятся при низкой температуре, летучие, при обычных условиях находятся в газообразном или жидком состоянии. многогранник симметрия тетраэдр

Икосаэдр в природе.

Фуллерены - удивительные полициклические структуры сферической формы, состоящие из атомов углерода, связанных в шести - и пятичленные циклы. Это новая модификация углерода, для которой, в отличие от трех ранее известных модификаций (алмаза, графита и карбина), характерна не полимерная, а молекулярная структура, т.е. молекулы фуллеренов дискретны.

Свое название эти вещества получили по имени американского инженера и архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные сооружения, состоящие из шести- и пятиугольников.

Впервые фуллерены C60 и C70 были синтезированы в 1985 г Х. Крото и Р. Смолли из графита под действием мощного лазерного пучка. Получить C60-фуллерен в количествах, достаточных для исследований, удалось в 1990 г Д. Хаффману и В. Кретчмеру, которые провели испарение графита с помощью электрической дуги в атмосфере гелия. В 1992 г. были обнаружены природные фуллерены в углеродном минерале - шугните (свое название этот минерал получил от названия поселка Шуньга в Карелии) и других докембрийских породах.

Молекулы фуллеренов могут содержать от 20 до 540 углеродных атомов, расположенных на сферической поверхности. Наиболее устойчивое и лучше изученное из этих соединений - C60-фуллерен (60 атомов углерода) состоит из 20 шестичленных и 12 пятичленных циклов. Углеродный скелет молекулы C60-фуллерена представляет собой усечённый икосаэдр.

В природе встречаются объекты, обладающие симметрией 5-го порядка. Известны, например, вирусы, содержащие кластеры в форме икосаэдра.

Вирусы, мельчайшие из организмов, настолько простые, что до сих пор неясно -- относить их к живой или неживой природе, -- эти самые вирусы справились с геометрической проблемой, потребовавшей у людей более двух тысячелетий! Все так называемые «сферические вирусы», в том числе такой страшный, как вирус полиомиелита, представляют собой икосаэдры, а не сферы, как думали раньше. Вирусы, построенные только из нуклеиновой кислоты и белка, могут походить на жесткую палочкообразную или гибкую нитевидную спираль, точнее на правильный двадцатигранник, или икосаэдр. Есть вирусы, размножающиеся в клетках животных (позвоночных и беспозвоночных), другие облюбовали растения, третьи (их называют бактериофагами или просто фагами) паразитируют в микробах, но икосаэдрическая форма встречается у вирусов всех этих трех групп.

Строение аденовирусов также имеет форму икосаэдра. Аденовирусы (от греческого aden - железо и вирусы), семейство ДНК-содержащих вирусов, вызывающих у человека и животных аденовирусные болезни.

Вирус гепатита В - возбудитель гепатита В, основной представитель семейства гепадновирусов. Это семейство включает также гепатотропные вирусы гепатита сурков, сусликов, уток и белок. Вирус ГВ является ДНК-содержащим. Он представляет собой частицу диаметром 42-47 нм, состоит из ядра - нуклеоида, имеющего форму икосаэдра диаметром 28 нм, внутри которого находятся ДНК, концевой белок и фермент ДНК-полимераза.

Выводы

Правильные многогранники окружают нас повсюду, порой даже в самых непредсказуемых местах. Это и различные вещества, и вода, и вирусы. Только, к сожалению, их форму (форму правильного многогранника) мы сможем увидеть только под микроскопом. Это еще раз подтверждает мое мнение что мир, совсем не так прост, как нам кажется. В нем много чудесного, невероятного, порой мы некоторые вещи можем увидеть только с помощью специальных приборов. А так же математика действительно окружает нас повсюду. Человек сталкивается с математикой каждый день и для того, чтобы научится ее замечать, надо изучить ее.

Список использованных источников

1. http://geometry2006.narod.ru/Lecture/Regula/RegPol.htm (Правильные многогранники).

2. https://ru.wikipedia.org/wiki/%CF%F0%E0%E2%E8%EB%FC%ED%FB%E9_%EC%ED%EE%E3%EE%E3%F0%E0%ED%ED%E8%EA (Правильный многогранник).

3. http://podelise.ru/docs/61509/index-8129.html

4. Стахов А., Слученкова А., Щербаков И. Код да Винчи и ряды Фибоначчи. - СПб.: Питер,2006.- 320с. (стр. 280-294).

Приложения

Приложение 1

Рисунок 1

Рисунок 2

Рисунок 3

Приложение 2

Список правильных многогранников

Правильный многогранник

Число сторон у грани

Число ребер, примыкающих к вершине

Число вершин

Число ребер

Число граней

Тетраэдр

3

3

4

6

4

Октаэдр

3

4

6

12

8

Гексаэдр

4

3

8

12

6

Икосаэдр

3

5

12

30

20

Додекаэдр

5

3

20

30

12

Размещено на Allbest.ru

...

Подобные документы

  • Определение правильного многогранника, его сторон, вершин, отрезков, соединяющих вершины. Анализ особенностей, геометрических свойств и видов правильных многогранников. Правильные многогранники, которые встречаются в живой природе и архитектуре.

    презентация [1,2 M], добавлен 13.11.2015

  • Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.

    презентация [3,5 M], добавлен 19.02.2017

  • Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.

    курсовая работа [1,7 M], добавлен 21.08.2013

  • Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.

    методичка [638,2 K], добавлен 30.04.2012

  • Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.

    презентация [6,5 M], добавлен 27.10.2013

  • Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.

    курсовая работа [4,6 M], добавлен 02.04.2012

  • Свойства куба, тетраэдра, октаэдра. Прямые и наклонные призмы. Учение о многоугольниках Пифагора. Деление циферблата часов. Создание колеса со спицами и астрономических сооружений. Виды и свойства пирамид. Теории построения правильных многоугольников.

    презентация [1,4 M], добавлен 26.04.2015

  • Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.

    курсовая работа [2,8 M], добавлен 18.01.2011

  • Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.

    презентация [4,9 M], добавлен 27.10.2013

  • Разнообразие мира кристаллов - мира природных многогранников. Правильные многогранники (поваренная соль и сернистый колчедан) и просто многогранники (кварц, гранат, алмаз, исландский шпат). Вид простейшего Circogonia icosahedra - форма икосаэдр.

    презентация [2,3 M], добавлен 21.03.2009

  • Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.

    реферат [14,0 K], добавлен 25.09.2009

  • Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

    реферат [1,1 M], добавлен 25.09.2009

  • Куб (гексаэдр) – представитель правильных выпуклых многогранников, его объем, сечения, площадь и свойства. Характеристика типов правильных многогранников в XIII книге "Начал" Евклида и идеалистической картине мира Платона. Отношение к кубу в философии.

    презентация [531,0 K], добавлен 03.11.2011

  • Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.

    реферат [73,5 K], добавлен 08.05.2011

  • Бинарная алгебраическая операция. Разновидности групп, использование рациональных чисел вместо вещественных. Действие группы на множестве. Группа симметрий тетраэдра. Формулировка и доказательство леммы Бернсайда о количестве орбит. Задачи о раскрасках.

    курсовая работа [822,9 K], добавлен 25.02.2015

  • Основные сведения о тетраэдре - поверхности, составленной из четырех треугольников. Количество его граней, ребер, вершин. Свойства тетраэдра, формулы нахождения объема, радиуса, высоты. Тетраэдры в живой природе, технике. Теорема Менелая для тетраэдра.

    презентация [4,2 M], добавлен 20.04.2014

  • Загальні типи правильних опуклих многогранників. Властивості тетраедрів, кубів, октаедрів, додекаедрів та ікосаедрів. Кількість сторін, ребер та вершин многогранника. Формули для визначення площі поверхні многогранників. Винаходження декартових координат.

    презентация [317,7 K], добавлен 12.12.2011

  • Пространственная симметрия правильного многогранника. Тетраэдр, октаэдр, икосаэдр, куб, додекаэдр. Геометрические свойства: площадь, объем. Роль Теэтета Афинского в развитии геометрии. Структура Солнечной системы и отношения расстояний между планетами.

    презентация [831,5 K], добавлен 04.05.2013

  • Исторические сведения, понятия о многогранниках. Изгибаемые многогранники Коннелли. Гипотеза кузнечных мехов. Построение модели Октаэдр Брикара, Флексор Штеффена. Симметрия, объем, изгибаемость и основные свойства многогранников. Теорема Сабитова.

    курсовая работа [488,9 K], добавлен 03.10.2010

  • Тела Платона, характеристика пяти правильных многогранников, их место в системе гармоничного устройства мира И. Кеплера. Агроритм построения треугольника средствами Mathcad. Формирование матрицы вершины координат додекаэдра, график поверхности.

    курсовая работа [644,0 K], добавлен 19.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.