Джордж Буль

Вклад в информатику и методологические идеи Джорджа Буля. Графический способ решения задания, булевы функции. Превращение логики в точную науку с помощью трактовки ее предмета средствами математического аппарата. Основные операции булевой алгебры.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.05.2015
Размер файла 32,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Уральский государственный университет физической культуры»

Кафедра Математики, физики и информационных технологий

Реферат

по дисциплине «Информатика»

Джордж Буль

Выполнила

студентка группы № 120а

Ахлюстина Е.В.

Проверил преподаватель

Алтухова М.А.

Челябинск 2013

Содержание

Введение

1. Биография

2. Вклад в информатику. Методологические идеи Джорджа Буля

3. Вклад Джорджа Буля в развитие математической логики

4. Булева алгебра

5. Булевы функции. Графический способ решения задания

Заключение

Список использованных источников

Введение

Буль (Boole) Джордж (2 ноября 1815, Линкольн, Великобритания - 8 декабря 1864, Баллинтемпль, Ирландия), английский математик и логик, один из основоположников математической логики. Разработал алгебру логики (булеву алгебру) ("Исследование законов мышления", 1854), основу функционирования цифровых компьютеров.

1. Биография

Джордж Буль (англ. George Boole; 2 ноября 1815, Линкольн -- 8 декабря 1864, Баллинтемпл, графство Корк, Ирландия) -- английский математик и логик.

Джордж Буль родился в бедной рабочей семье. Первые уроки математики получил у отца и, хотя посещал местную школу, в общем его можно считать самоучкой. В 12 лет он уже знал латынь, затем овладел греческим, французским, немецким и итальянским языками. В 16 лет уже преподавал в деревенской школе, а в 20 открыл собственную школу в Линкольне. В редкие часы досуга зачитывался математическими журналами Механического института, интересовался работами математиков прошлого - Ньютона, Лапласа, Лагранжа, проблемами современной алгебры.

Его первоначальное преподавание было всегда на уровне, однако он не считал это профессией, хотя она и была почетна. Буль стал священнослужителем. Когда он не преподавал, то проводил время в серьезном изучении французского, немецкого и итальянского языков, в подготовке к церковной жизни. Неудачи, бедность его семейства еще раз разрушили планы Буля; родители убеждали его отказаться от религиозной жизни ввиду их ухудшающегося финансового положения. Он был женат (с 1855 г.) на Мэри Эверест (з. Эверест-Буль).

2. Вклад в информатику. Методологические идеи Джорджа Буля

Начиная с 1839 года, Буль стал посылать свои работы в новый Кембриджский математический журнал. Его первая работа "Исследования по теории аналитических преобразований" касалась дифференциальных уравнений, алгебраических проблем линейной трансформации и концепции инвариантности. В своем исследовании 1844 года, опубликованном в "Философских трудах Королевского общества", он коснулся проблемы взаимодействия алгебры и исчисления.

В том же году молодой ученый был награжден медалью Королевского общества за вклад в математический анализ. Вскоре после того, как Буль убедился, что его алгебра вполне применима к логике, в 1847 году он опубликовал памфлет "Математический анализ логики", в котором высказал идею, что логика более близка к математике, чем к философии.

В 1854 году он опубликовал работу "Исследование законов мышления, базирующихся на математической логике и теории вероятностей". Работы 1847 и 1854 годов дали рождение алгебре логики, или булевой алгебре. Буль первым показал, что существует аналогия между алгебраическими и логическими действиями, так как и те, и другие предполагают лишь два варианта ответов - истина или ложь, нуль или единица. Он придумал систему обозначений и правил, пользуясь которыми можно было закодировать любые высказывания, а затем манипулировать ими как обычными числами. Булева алгебра располагала тремя основными операциями - И, ИЛИ, НЕ, которые позволяли производить сложение, вычитание, умножение, деление и сравнение символов и чисел. Таким образом, Булю удалось подробно описать двоичную систему счисления. В своей работе "Законы мышления" (1854) Буль окончательно сформулировал основы математической логики.

Методологические идеи Джорджа Буля

Вопрос о методологических воззрениях Дж. Буля достаточно сложен. В большинстве случаев о них судят, основываясь лишь на его ранних высказываниях. Анализируя их, обычно приходят к выводу о том, что Буля можно рассматривать как предшественника формализма гильбертовского типа.

Полезно также обратить внимание на то, как Буль определяет замысел своих “Законов мысли”: “Цель настоящего исследования состоит в том, чтобы изучить основные законы тех операций ума, посредством которых осуществляются рассуждения; -- в том, чтобы дать выражение этих законов в символическом языке логического исчисления, и на этом основании утвердить логику как науку и ее методы, -- в том, чтобы сделать эти методы базисом еще более общего метода в целях приложения его к математической теории вероятностей; и, наконец, в том, чтобы, объединив различные элементы истины, проложить путь к выдвижению некоторых вероятностных указаний, касающихся природы и структуры человеческого мышления”.

Итак, превращение логики в точную науку мыслится Булем с помощью трактовки ее предмета средствами математического аппарата. Уже в своей работе “Математический анализ логики” (1847) Буль писал: “Руководствуясь принципом правильной классификации, необходимо теперь связать логику не с философией, а с математикой”.

По Булю, общие взгляды на логику должны проливать свет и на выяснение природы интеллектуальных способностей. Отсюда можно лишь заключить, что Буль не игнорировал практический аспект логических исследований. Особое значение в этом отношении приобретает, с его точки зрения, раскрытие природы умозаключения. Изложение логики в форме исчисления отнюдь не является, по Булю, произвольным актом, а продиктовано тождеством формальных особенностей логических преобразований.

3. Вклад Джорджа Буля в развитие математической логики

Буль считается основоположником математической логики как самостоятельной дисциплины. В его работах логика обрела свой алфавит, свою орфографию и грамматику. Недаром начальный раздел математической логики называют алгеброй логики, или булевой алгеброй.

Вскоре после того как Буль убедился, что его алгебра вполне применима к логике, в 1847 году он опубликовал памфлет «Математический анализ логики», в котором высказал идею, что логика более близка к математике, чем к философии. Эта работа была чрезвычайно высоко оценена английским математиком Огастесом (Августустом) Де Морганом. Благодаря этой работе Буль в 1849 году получил пост профессора математики Куинз-колледжа в графстве Корк.

В 1854 году опубликовал работу «Исследование законов мышления, базирующихся на математической логике и теории вероятностей». Работы 1847-1854 годов положили начало алгебре логики, или булевой алгебре. Буль первым показал, что существует аналогия между алгебраическими и логическими действиями, так как и те, и другие предполагают лишь два варианта ответов -- истина или ложь, нуль или единица. Он придумал систему обозначений и правил, пользуясь которыми можно было закодировать любые высказывания, а затем манипулировать ими как обычными числами. Булева алгебра располагала тремя основными операциями -- И, ИЛИ, НЕ, которые позволяли производить сложение, вычитание, умножение, деление и сравнение символов и чисел. Таким образом, Булю удалось подробно описать двоичную систему счисления. В своей работе «Законы мышления» (1854 г.) Буль окончательно сформулировал основы математической логики. Он также попытался сформулировать общий метод вероятностей, с помощью которого из заданной системы вероятных событий можно было бы определить вероятность последующего события, логически связанного с ними.

Буль не считал логику разделом математики, но находил глубоко аналогию между символическим методом алгебры и символическим методом представления логических форм и силлогизмов. Буль показал, что символики такого рода подчиняется тем же законам, что и алгебраическая, из чего следовало, что их можно складывать, вычитать, умножать и даже делить. В такой символике высказывания могут быть сведены к форме уравнений, а заключение из двух посылок силлогизма -- получено путем исключения среднего термина по обычным алгебраическим правилам. Еще более оригинальной и примечательной была часть его системы, представленной в «Законах мышления...», образующая общий символический метод логического вывода. Буль показал, как из любого числа высказываний, включающих любое число терминов, вывести любое заключение, следующее из этих высказываний, путем чисто символических манипуляций. Вторая часть «Законов мышления...» содержит аналогичную попытку обнаружить общий метод в исчислении вероятностей, позволяющий из заданных вероятностей совокупности событий определить вероятность любого другого события, логически связанного с ними.

Буль обозначал универсум мыслимых объектов, буквенными символами -- выборки из него, связанные с обычными прилагательными и существительными. Буль показал, что символика такого рода подчиняется тем же законам, что и алгебраическая, из чего следовало, что их можно складывать, вычитать, умножать и даже делить. В «Законах мышления» (An investigation of the Laws of Thought), Буль показал, как из любого числа высказываний, включающих любое число терминов, вывести любое заключение, следующее из этих высказываний, путем чисто символических манипуляций. Вторая часть «Законов мышления» содержит аналогичную попытку обнаружить общий метод в исчислении вероятностей, позволяющий из заданных вероятностей совокупности событий определить вероятность любого другого события, логически связанного с ними.

Буль изобрел своеобразную алгебру -- систему обозначений и правил, применимую к всевозможным объектам, от чисел и букв, до предложений. Пользуясь этой системой, Буль мог закодировать высказывания -- утверждения, истинность или ложность которых требовалось доказать, - с помощью символов своего языка, а затем манипулировать ими подобно тому, как в математике манипулируют обычными числами.

Три основные операции булевой алгебры -- это И, ИЛИ, и НЕ. Хотя система Буля допускает множество других операций -- часто называемых логическими действиями, - указанных трех уже достаточно для того, чтобы производить сложение, вычитание, умножение и деление или выполнять такие операции, как сравнение символов и чисел. Логические действия двоичны по своей сути, они оперируют лишь с двумя сущностями - «истина» или «ложь», «да» или «нет», «открыт» или «закрыт», нуль или единица. Буль надеялся, что его система, очистив логические аргументы от словесной шелухи, облегчит поиск правильного заключения и сделает его всегда достижимым.

В 1857году Буль был избран членом Лондонского Королевского общества. Его работы «Трактат о дифференциальных уравнениях» (1859г.) и «Трактат о вычислении предельных разностей» (1860 г.) оказали колоссальное влияние на развитие математики. В них нашли свое отражение наиболее важные открытия Буля.

Большинство логиков того времени либо игнорировали, либо резко критиковали систему Буля, но ее возможности оказались настолько велики, что она не могла долго оставаться без внимания.

4. Булева алгебра

Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюкции), (аналог дизъюкцию), унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны аксиом.

Булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй.

Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬ a любого элемента a однозначно определено.

Самая простая нетривиальная булева алгебра содержит всего два элемента, 0 и 1, а действия в ней определяются в Таблице 1, Таблице 2 и Таблице 3:

Таблица 1. Конъюнкция

a

0

0

1

1

b

0

1

0

1

a^b

0

0

0

1

Таблица 2. Дизъюнкция

a

0

0

1

1

b

0

1

0

1

v

0

1

0

1

Таблица 3. Инверсия

a

¬a

0

1

1

0

5. Булевы функции. Графический способ решения задания

Определение. Переменная x называется булевой, если она способна принимать только два значения 0 и 1. В качестве примера интерпретации такого рода переменных может выступать обычный настенный выключатель света на два положения. Здесь 1 соответствует положению переключателя вверх и 0 -- положению вниз.

Определение. Функция f(x1,x2,…,xn) называется булевой (или логической, или функцией алгебры логики, или переключательной), если все ее аргументы x[i] являются булевыми, а сама функция также может принимать только два значения 0 и 1. Множество всех булевых функций от переменных x1,x2,…,xn обозначают через P2.

Способы задания булевых функций не отличаются от способов задания обычных функций анализа. К таковым способам задания стандартно относятся:

1) табличный;

2) графический;

3) аналитический.

Графический способ решения задания

Рассмотрим графическое представление булевой функции трех аргументов w=f(x,y,z), заданной таблично. Заметим, что множество наборов области определения функции D={(x,y,z), | x,y,z ? {0,1}} является множеством координат точек вершин единичного трехмерного куба. Очевидный способ графического представления булевой функции -- это отметить каким-то образом вершины куба, в которых функция принимает значение 1.

Замечание. Очевидно, что область определения булевой функции n аргументов w=f(x1,x2,…,xn) составляется из наборов координат точек вершин единичного n-мерного куба.

Символы ¬, |, v, ?, , ?, >, ?, ~, участвующие в обозначениях элементарных функций, называются логическими связками (операциями) или функциональными символами.

Заключение

Бурное развитие математической логики во многом определяет основные тенденции научного прогресса наших дней.

Основоположником математической логики является Джордж Буль. Положив в основу своих исследований аналогию между алгебры и логики, он разработал соответствующее логическое исчисление, в котором применил законы и операции математики (добавление классов, умножение и т.п.). В своих работах Буль преследует, как правило, одну цель: найти элементарные операции человеческого мышления и исследовать его законы, выйдя за рамки дедуктивной и индуктивной логики. Выражаясь современным языком, его исследования принадлежат к области кибернетики. Буль затронул и другую проблему: найти ту внутреннюю связь между логикой и математикой, которая впоследствии явилась предметов исследования Пеано, Кутюра, Гильберта, Рассела и др.

Если еще точнее, Буль не считал, вообще говоря, логику разделом математики, но находил глубокую аналогию между символическим методом алгебры и символическим методом представления мыслительной способности человека в виде логических форм и силлогизмов.

Сегодня математическая логика нашла применение во многих областях человеческой деятельности, перечислим основные:

Логика оказала влияние на развитие математики, прежде всего теории множеств, формальных систем, алгоритмов, рекурсивных функций.

Идеи и аппарат логики используется в кибернетике, вычислительной технике и электротехнике (построение компьютеров основано на законах математикой логики).

Математическая логика является средством для изучения деятельности мозга -- для решения этой самой важной проблемы биологии и науки вообще.

Список использованных источников

буль логика математический алгебра

1. Игошин В.И. Математическая логика и теория алгоритмов: учеб. Пособие для студ. Высш. учеб. Заведений / В.И. Игошин. - 2-е изд., стер. - М.: Издательский центр "Академия", 2008. - 448 с.

2. Колмогоров А.Н., Юшкевич А.П. (ред.) Математика XIX века. Том 1 Математическая логика. Алгебра. Теория чисел. Теория вероятностей. М.: Наука. 1978.

3. Википедия: свободная электронная энциклопедия: на русском языке [Электронный ресурс]. - URL: http://ru.wikipedia.org (дата обращения: 18.12.2013).

Размещено на Allbest.ru

...

Подобные документы

  • Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.

    контрольная работа [83,3 K], добавлен 26.04.2011

  • Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.

    контрольная работа [178,2 K], добавлен 20.01.2011

  • Булевы алгебры – решетки особого типа, применяемые при исследовании логики (как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Минимальные формы булевых многочленов. Теоремы абстрактной булевой алгебры.

    курсовая работа [64,7 K], добавлен 12.05.2009

  • Системы цифровой обработки информации. Понятие алгебры Буля. Обозначения логических операций: дизъюнкция, конъюнкция, инверсия, импликация, эквивалентность. Законы и тождества алгебры Буля. Логические основы ЭВМ. Преобразование структурных формул.

    презентация [554,8 K], добавлен 11.10.2014

  • Логический синтез устройства с использованием соотношений булевой алгебры. Составление таблицы истинности. Основные соотношения булевой алгебры. Логическая функция в смысловой, словесной, вербальной, табличной и аналитической математической формах.

    лабораторная работа [83,6 K], добавлен 26.11.2011

  • Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга.

    курс лекций [651,0 K], добавлен 08.08.2011

  • Основные понятия алгебры логики. Дизъюнктивные и конъюнктивные нормальные формы. Сущность теоремы Шеннона. Булевы функции двух переменных. Последовательное и параллельное соединение двух выключателей. Свойства элементарных функций алгебры логики.

    контрольная работа [345,3 K], добавлен 29.11.2010

  • Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.

    реферат [63,3 K], добавлен 06.12.2010

  • Логическая переменная в алгебре логики. Логические операции: отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность. Основные законы алгебры логики. Правила минимизации логической функции (избавление от операций импликации и эквивалентности).

    курсовая работа [857,2 K], добавлен 16.01.2012

  • Свойства операций над множествами. Формулы алгебры высказываний. Функции алгебры логики. Существенные и фиктивные переменные. Проверка правильности рассуждений. Алгебра высказываний и релейно-контактные схемы. Способы задания графа. Матрицы для графов.

    учебное пособие [1,5 M], добавлен 27.10.2013

  • Основные формы мышления: понятия, суждения, умозаключения. Сочинение Джорджа Буля, в котором подробно исследовалась логическая алгебра. Значение истинности (т.е. истинность или ложность) высказывания. Логические операции инверсии (отрицания) и конъюнкции.

    презентация [399,6 K], добавлен 14.12.2016

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Представление с помощью кругов Эйлера множественного выражения. Законы и свойства алгебры множеств, упрощение выражений. Система функций, ее возможные базисы. Минимизирование булевой функции. Метод Квайна – Мак-Класки. Определение хроматического числа.

    контрольная работа [375,6 K], добавлен 17.01.2011

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация [67,8 K], добавлен 23.12.2012

  • Математическая теория нечетких множеств и нечеткая логика как обобщения классической теории множеств и классической формальной логики. Сферы и особенности применения нечетких экспертных систем. Анализ математического аппарата, способы задания функций.

    презентация [1,0 M], добавлен 17.04.2013

  • Информация, с которой имеют дело различного рода автоматизированные информационные системы, обычно называется данными, а сами такие системы - автоматизированными системами обработки данных. Различают исходные, промежуточные и выходные данные.

    реферат [38,7 K], добавлен 19.05.2006

  • Упорядоченные множества. Решётки. Дистрибутивные решётки. Обобщённые булевы решётки, булевы решётки. Идеалы. Конгруэнции. Основная теорема. Установление взаимно однозначного соответствия между конгруэнциями и идеалами.

    дипломная работа [354,6 K], добавлен 08.08.2007

  • Основные этапы развития булевой алгебры и применение минимальных форм булевых многочленов к решению задач, в частности, с помощью метода Куайна - Мак-Класки. Применение минимизирования логических форм при проектировании устройств цифровой электроники.

    курсовая работа [58,6 K], добавлен 24.05.2009

  • История развития и становления математического понятия функции. Абстрактные характеристики упорядоченных алгебр многоместных функций: P-алгебры и D-алгебры. Исследование теории суперпозиций алгебраических структур n-местных функций Менгера и Глускера.

    курсовая работа [263,7 K], добавлен 22.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.