Способы задания функции
Определение сущности функции, областей ее определение и значения. Особенности аналитического и табличного способов задания функций. Рассмотрение основных свойств и графического отражения постоянной, линейной, степенной, обратной, сложной функций.
Рубрика | Математика |
Вид | доклад |
Язык | русский |
Дата добавления | 23.05.2015 |
Размер файла | 16,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Доклад
на тему: Способы задания функции
Выполнила: Ковалёва Юлия
211 группа "Лечебное дело"
Преподаватель: Пушкарская
Ольга Владимировна
2015
Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости.
1. Функция и её свойства
Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х- независимая переменная или аргумент.
Переменная у- зависимая переменная
Значение функции- значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
Возрастающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)<f(х2)
Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2)
2. Способы задания функции
Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)- с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.
На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.
3. Виды функций и их свойства
1) Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат
2) Прямая пропорциональность- функция, заданная формулой у=kx, где к№0. Число k называется коэффициентом пропорциональности.
Cвойства функции y=kx:
1. Область определения функции- множество всех действительных чисел
2. y=kx - нечетная функция
3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой
3)Линейная функция- функция, которая задана формулой y=kx+b, где k и b-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую пропорциональность y=kx.
Свойства функции y=kx+b:
1. Область определения- множество всех действительных чисел
2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.
3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой
Графиком функции является прямая.
4) Обратная пропорциональность- функция, заданная формулой y=k/х, где k№0 Число k называют коэффициентом обратной пропорциональности.
Свойства функции y=k/x:
1. Область определения- множество всех действительных чисел кроме нуля
2. y=k/x- нечетная функция
3. Если k>0, то функция убывает на промежутке (0;+Ґ) и на промежутке (-Ґ;0). Если k<0, то функция возрастает на промежутке (-Ґ;0) и на промежутке (0;+Ґ).
Графиком функции является гипербола.
5)Функция y=x2
Свойства функции y=x2:
1. Область определения- вся числовая прямая
2. y=x2 - четная функция
3. На промежутке [0;+Ґ) функция возрастает
4. На промежутке (-Ґ;0] функция убывает
Графиком функции является парабола.
6)Функция y=x3
Свойства функции y=x3:
1. Область определения- вся числовая прямая
2. y=x3 -нечетная функция
3. Функция возрастает на всей числовой прямой
Графиком функции является кубическая парабола
7)Степенная функция с натуральным показателем- функция, заданная формулой
y=xn, где n- натуральное число. При n=1 получаем функцию
y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2;
y=x3. Их свойства рассмотрены выше.
Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция
y=xn обладает теми же свойствами, что и функция y=x2.
График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем “теснее прижимаются” к оси Х, чем больше n.
Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x
График функции напоминает кубическую параболу.
8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n, где n- натуральное число.
При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.
Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x-n обладает в основном теми же свойствами, что и функция y=1/х.
Пусть n- четное число, например n=2.
Свойства функции y=x-2:
1. Функция определена при всех x№0
2. y=x-2 - четная функция
3. Функция убывает на (0;+Ґ) и возрастает на (-Ґ;0).
Теми же свойствами обладают любые функции при четном n, большем двух.
9)Функция y=Цх
Свойства функции y=Цх:
1. Область определения - луч [0;+Ґ).
2. Функция y=Цх - общего вида
3. Функция возрастает на луче [0;+Ґ).
10)Функция y=3Цх
Свойства функции y=3Цх:
1. Область определения- вся числовая прямая
2. Функция y=3Цх нечетна.
3. Функция возрастает на всей числовой прямой.
11)Функция y=nЦх
При четном n функция обладает теми же свойствами, что и функция y=Цх. При нечетном n функция y=nЦх обладает теми же свойствами, что и функция y=3Цх.
12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=xr, где r- положительная несократимая дробь.
Свойства функции y=xr:
1. Область определения- луч [0;+Ґ).
2. Функция общего вида
3. Функция возрастает на [0;+Ґ).
На рисунке изображен график функции y=x5/2. Он заключен между графиками функций y=x2 и y=x3, заданных на промежутке [0;+Ґ).Подобный вид имеет любой график функции вида y=xr, где r>1.
На рисунке изображен график функции y=x2/3. Подобный вид имеет график любой степенной функции y=xr, где 0<r<1
13)Степенная функция с отрицательным дробным показателем-функция, заданная формулой y=x-r, где r- положительная несократимая дробь.
Свойства функции y=x-r:
1. Обл. определения -промежуток (0;+Ґ)
2. Функция общего вида
3. Функция убывает на (0;+Ґ)
14)Обратная функция
Если функция y=f(x) такова, что для любого ее значения yo уравнение f(x)=yo имеет относительно х единственный корень, то говорят, что функция f обратима.
Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y.
Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x.
15)Сложная функция- функция, аргументом которой является другая любая функция.
Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. функция графический аналитический табличный
Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.
Размещено на Allbest.ru
...Подобные документы
Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.
презентация [98,6 K], добавлен 18.01.2015Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.
реферат [3,5 M], добавлен 09.05.2009Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.
лабораторная работа [253,6 K], добавлен 05.01.2015Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.
курсовая работа [44,8 K], добавлен 23.11.2011Классификация основных элементарных функций: степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические. Определение и простейшие свойства линейной и квадратичной функции. Понятие обратной пропорциональной зависимости.
презентация [1,0 M], добавлен 29.10.2015Области определения и значений функции. Заданная, монотонная, ограниченная и неограниченная, непрерывная и разрывная, четная и нечетная функции. Определение асимптоты. Степенная функция с вещественным показателем. Квадратичная и логарифмическая функции.
реферат [417,9 K], добавлен 26.03.2013Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.
презентация [332,2 K], добавлен 21.09.2013Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.
курсовая работа [157,4 K], добавлен 10.04.2011Общий обзор свойств функций, осмысление каждого свойства. Исследование функции на монотонность, ее наибольшее и наименьшее значения. Тестовое задание "Выпуклость функции". Примеры непрерывной функции D(f)=[-4; 6] и прерывной функции D(f)=(1; 7).
презентация [360,5 K], добавлен 13.01.2015Вычисление пределов гиперболических функций. Дифференцирование сложной функции. Разложение гиперболических функций по формуле Тейлора. Свойства неопределенного интеграла, интегрирование функций. Гиперболические функции комплексного переменного.
дипломная работа [2,8 M], добавлен 11.01.2011Поиск производной сложной функции как равной производной функции по промежуточному аргументу, умноженной на его производную по независимой переменной. Теорема о связи бесконечно малых величин с пределами функций. Правило дифференцирования сложной функции.
презентация [62,1 K], добавлен 21.09.2013Рассмотрение и анализ основных свойств показательной функции: решение задач, способы построения графиков. Понятие и примеры применения гиперболических функций, их роль в различных приложениях математики. Способы нахождения области определения функции.
контрольная работа [902,6 K], добавлен 01.11.2012Математическое представление, условия возрастания и убывания функции y=f(x); характеристика ее основных свойств - четности, монотонности, ограниченности и периодичности. Ознакомление с аналитическим, графическим и табличным способами задания функции.
презентация [108,2 K], добавлен 21.09.2013Определение и простейшие свойства измеримой функции. Дальнейшие свойства измеримых функций. Последовательности измеримых функций. Сходимость по мере. Структура измеримых функций. теоремы о приближении измеримых функций.
курсовая работа [86,9 K], добавлен 28.05.2007Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.
контрольная работа [157,0 K], добавлен 11.03.2015Поиск нулей функции как важнейшая процедура при исследовании и построении различных функций зависимостей, его значение при изучении непрерывных процессов. Характерные признаки наличия корня у функции. Итерация Ньютона для задания системы уравнений.
реферат [48,6 K], добавлен 10.08.2009Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.
контрольная работа [98,4 K], добавлен 07.02.2015Исследование функции на непрерывность. Определение производных показательной функции первого и второго порядков. Определение скорости и ускорения материальной точки, движущейся прямолинейно по закону. Построение графиков функций, интервалов выпуклости.
контрольная работа [180,3 K], добавлен 25.03.2014Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
задача [484,3 K], добавлен 02.10.2009Определение значения заданной функции в указанной точке при помощи интерполяционной схемы Эйткина. Проверка правильности данного решения с помощью кубического сплайна. Практическая реализация данного задания на языке Pascal и при помощи таблиц Excel.
курсовая работа [496,3 K], добавлен 29.08.2010