Методика изучения алгебраического материала

Изучение понятия "математическое выражение". Описание порядка выполнения действий в сложных выражениях. Методика ознакомления с буквенной символикой в алгебре. Основные свойства числового равенства. Рассмотрение неравенства с переменной, уравнения.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 06.06.2015
Размер файла 58,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика изучения алгебраического материала

Лекция 1. Математические выражения

1.1 Изучение понятия "математическое выражение"

Алгебраический материал изучается, начиная с 1 класса в тесной связи с арифметическим материалом и геометрическим. Введение элементов алгебры способствует общению понятий о числе, арифметических действиях, математических отношениях и вместе с тем готовит детей к изучению алгебры в следующих классах.

Основными алгебраическими понятиями курса являются "равенство", "неравенство", "выражение", уравнение". Определений данных понятий в курсе математики начальных классов нет. Учащиеся уясняют эти понятия на уровне представлений в процессе выполнения специально подобранных упражнений.

Программой по математике в 1-4 классах предусматривается научить детей читать и записывать магматические выражения: ознакомить с правилами порядком выполнения действий и научить ими пользоваться при вычислениях, ознакомить учащихся с тождественными преобразованиями выражений.

При формировании у детей понятия математического выражения необходимо учитывать, что знак действия, поставленный между числами имеет двоякий смысл; с одной стороны, он обозначает действие, которое надо выполнить над числами (например, 6+4 - прибавить 4); с другой стороны, знак действия служит для обозначения выражения (6+4 - это сумма чисел 6 и 4).

В методике работы над выражениями предусматривается два этапа. На первом из них формируется понятие о простейших выражениях (сумма, разность, произведение, частное двух чисел), а на втором - о сложных (сумма про, изведения и числа, разность двух частных и т.д.).

Знакомство с первым выражением - суммой двух; чисел происходит в 1 классе при изучении сложения в вычитания в пределах 10. Выполняя операции над множествами, дети, прежде всего, усваивают конкретный смысл сложения и вычитания, поэтому в записях вида 5+1, 6-2 знаки действий осознаются ими как краткое обозначение слов "прибавить", "вычесть". Это находит отражение в чтении (к 5 прибавить 1 равно 6, из 6 вычесть 2 равно 4). В дальнейшем понятия об этих действиях углубляются. Учащиеся узнают, что, прибавляя несколько единиц, увеличиваем число на столько же единиц, а вычитая - уменьшаем его на столько же единиц. Это также находит отражение в новой форме чтения записей (4 увеличить на 2 равно 6, 7 уменьшить на 2 равно 5), Затем дети узнают названия знаков действий: "плюс", "минус" и читают примеры, называя знаки действий (4+2=6, 7-3 =4),

Ознакомившись с названиями компонентов и результатом действия сложения, учащиеся используют термин "сумма" для обозначения числа, являющегося результатом сложения. Опираясь на знания детей о названиях чисел при сложении, учитель поясняет, что в примерах на сложение запись, состоящая из двух чисел, соединенных знаком "плюс", называется так же, как и число, стоящее по другую сторону от знака "равно" (9 сумма" 6+3 - тоже сумма). Наглядно изображается это так:

Чтобы дети усвоили новое значение термина "сумма" как название выражения, даются такие упражнения: "Запишите сумму чисел 7 и 2; вычислите, чему равна сумма чисел 3 и 4; прочитайте запись (6+3), скажите, чему равна сумма; замените число суммой чисел (9= ?+?); сравните суммы чисел (6+3 и 6+2), скажите, какая из них больше, запишите со знаком "больше" и прочитайте запись". В процессе таких упражнений учащиеся постепенно осознают двоякий смысл термина "сумма": чтобы записать сумму чисел, надо их соединить знаком "плюс"; чтобы найти значение суммы, надо сложить заданные числа.

Примерно в таком же плане идет работа над следующими выражениями: разностью, произведением и частным двух чисел. Однако теперь каждый из этих терминов вводится сразу и как название выражения, и как название результата действия. Умение читать и записывать выражения, находить их значение с помощью соответствующего действия вырабатывается в процессе многократных упражнений, аналогичных упражнениям с суммой.

При изучении сложения и вычитания в пределах 10 включаются выражения, состоящие из трех и более чисел, соединенных одинаковыми или различными знаками действий вида: 3+1+1, 4-1-1, 2+2+2. Вычисляя значения этих выражений, дети в выражениях овладевают правилом о порядке выполнения Действий в выражениях без скобок, хотя и не формулируют его. Несколько позднее детей учат преобразовывать выражения в процессе вычислений: например: 7+5=3+5=8. Такие записи являются первым шагом в выполнении тождественных преобразований.

Знакомство первоклассников с выражениями вида: 10 - (6+2), (7-4)+5 и т.п. готовит их к изучению правил прибавления числа к сумме, вычитания числа из суммы и др., к записи решения составных задач, а также способствуют более глубокому усвоению понятия выражения.

Методика ознакомления учащихся с выражением вида: 10+(6-2), (7+4)+5 и т.п. готовит их к изучению правил прибавления числа к сумме, вычитания числа из суммы и др., к записи решения составных задач, а также способствуют более глубокому усвоению понятия выражения.

Методика ознакомления учащихся с выражением вида: 10+(6-2), (5+3) -1 может быть различной. Можно сразу учить читать готовые выражения по аналогии с образцом и вычислять значения выражений, поясняя последовательность действий. Возможен и другой путь ознакомления детей с выражениями данного вида - составление этих выражений учащимися из заданного числа и простейшего выражения.

Умение составлять и находить значение выражений используется учащимися при решении составных задач, вместе с тем здесь происходит дальнейшее овладение понятием выражения, усваивается конкретный смысл выражений в записях решений задач. Полезно в этом плане упражнение: дается условие задачи, например, "У мальчика было 24 рубля. Мороженое стоит 12 рублей, а конфета - 6 рублей". Дети должны объяснить, что в этом случае показывают следующие выражения:

Во втором классе вводятся термины "математическое выражение" и "значение выражения" (без определения). После записи нескольких примеров в одно действие учитель сообщает, что эти примеры иначе называются математическими выражениями.

По заданию учителя дети сами составляют различные выражения. Учитель предлагает вычислить результаты и поясняет, что результаты иначе называют значениями математических выражений. Затем рассматриваются и более сложные математические выражения.

В дальнейшем при выполнении различных упражнений сначала учитель, а затем и дети употребляют новые термины (запишите выражения, найдите значение выражения, сравните выражения и т.п.).

В сложных выражениях знаки действий, соединяющие простейшие выражения, также имеют двоякий смысл, что постепенно раскрывается учащимися. Например, в выражении 20+(34-8) знак "+" обозначает действие, которое надо выполнить над числом 20 и разностью чисел 34 и 8 (к 20 прибавить разность чисел 34 и 8). Кроме того, знак "плюс" служит для обозначения суммы - это выражение есть сумма, в которой первое слагаемое 20, а второе слагаемое выражено разностью чисел 34 и 8.

После того как дети ознакомятся во втором классе с порядком выполнения действий в сложных выражениях, приступают к формированию понятий суммы, разности, произведения, частного, в которых отдельные элементы заданы выражениями.

В дальнейшем, в процессе многократных упражнений в чтении, составлении и записи выражений, учащиеся постепенно овладевают умением устанавливать вид сложного выражения (в 2-3 действия).

Значительно облегчает детям работу схема, которая составляется коллективно и используется при чтении выражений:

установить, какое действие выполняется последним;

вспомнить, как называются числа при выполнении этого действия;

прочитать, чем выражены эти числа.

Упражнения в чтении и записи сложных действий, простейшими выражениями, помогают детям усвоить правила порядка действий.

1.2 Изучение правил порядка действий

Правила порядка выполнения действий в сложных выражениях изучаются во 2 классе, но практически некоторые из них дети используют еще в 1 классе.

Сначала рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами производят либо только сложение и вычитание, либо только умножение и деление. Необходимость введения выражений, содержащих два и более арифметических действий одной ступени, возникает при знакомстве учеников с вычислительными приемами сложения и вычитания в пределах 10, а именно:

Аналогично: 6 - 1 - 1, 6 - 2 - 1, 6 - 2 - 2.

Так как для нахождения значений этих выражений школьники обращаются к предметным действиям, которые выполняются в определенном порядке, то они легко усваивают тот факт, что арифметические действия (сложение и вычитание), которые имеют место в выражениях, выполняются последовательно слева направо.

С числовыми выражениями, содержащими действия сложения и вычитания, а также скобки, учащиеся впервые встречаются в теме "Сложение и вычитание в пределах 10". Когда дети встречаются с такими выражениями в 1 классе, например: 7 - 2 + 4, 9 - 3 - 1 , 4 +3 - 2; во 2 классе, например: 70 - 36 +10, 80 - 10 - 15, 32+18 - 17; 4*10:5, 60:10*3, 36:9*3, учитель показывает, как читают и записывают такие выражения и как находят их значение (например, 4*10:5 читают: 4 умножить на 10 и полученный результат разделить на 5). К моменту изучения во 2 классе темы "Порядок действий" учащиеся умеют находить значения выражений этого вида. Цель работы на данном этапе - опираясь практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило. Учащиеся самостоятельно решают подобранные учителем примеры и объясняют, в каком порядке выполняли; действия в каждом примере. Затем формулируют сами или читают по учебнику вывод: если в выражении без скобок указаны только действия сложения и вычитания (или только действия умножения и деления), то их выполняют в том порядке, в каком они записаны (т.е. слева направо).

Несмотря на то, что в выражениях вида а+в+с, а+(в+с) и (а+в)+с наличие скобок не влияет на порядок выполнения действий в силу сочетательного закона сложения, на этом этапе учащихся целесообразнее сориентировать на то, что сначала выполняется действие в скобках. Это связано с тем, что для выражений вида а - (в+с) и а - (в - с) такое обобщение неприемлемо и учащимся на начальном этапе довольно трудно будет сориентироваться в назначении скобок для различных числовых выражений. Использование скобок в числовых выражениях, содержащих действия сложения и вычитания, в дальнейшем получает свое развитие, которое связано с изучением таких правил, как прибавление суммы к числу, числа к сумме, вычитание суммы из числа и числа из суммы. Но при первом знакомстве со скобками важно нацелить учащихся на то, что сначала выполняется действие в скобках.

Учитель обращает внимание детей на то, как важно соблюдать это правило при вычислениях, иначе можно получить неверное равенство. Например, учащиеся объясняют, каким образом, получены значения выражений: 70 - 36 +10=24, 60:10 - 3 =2, почему они неверны, какие значения в действительности имеют эти выражения. Аналогично изучают порядок действий в выражениях со скобками вида: 65 - (26 - 14), 50:(30 - 20), 90:(2 * 5). С такими выражениями учащиеся также знакомы и умеют их читать, записывать и вычислять их значение. Объяснив порядок выполнения действий в нескольких таких выражениях, дети формулируют вывод: в выражениях со скобками первым выполняется действие над числами, записанными в скобках. Рассматривая эти выражения нетрудно показать, что действия в них выполняются не в том порядке, в каком записаны; чтобы показать другой порядок их выполнения, и использованы скобки.

Следующим вводится правило порядка выполнения действий в выражениях без скобок, когда в них содержатся действия первой и второй ступени. Поскольку правила порядка действий приняты по договоренности, учитель сообщает их детям или же учащиеся знакомятся с ними по учебнику. Чтобы учащиеся усвоили введенные правила, наряду с тренировочными упражнениями включают решение примеров с пояснением порядка выполнения их действий. Эффективны также упражнения в объяснении ошибок на порядок выполнения действий. Например, из заданных пар примеров предлагается выписать только те, где вычисления выполнены по правилам порядка действий:

После объяснения ошибок можно дать задание: используя скобки, изменить порядок действий так, чтобы выражение имело заданное значение. Например, чтобы первое из приведенных выражений имело значение, равное 10, надо записать его так: (20+30):5=10.

Особенно полезны упражнения на вычисление значения выражения, когда ученику приходится применять все изученные правила. Например, на доске или в тетрадях записывается выражение 36:6+3*2. Учащиеся вычисляют его значение. Затем по заданию учителя дети изменяют с помощью скобок порядок действий в выражении:

36:6+3-2

36:(6+3-2)

36:(6+3)-2

(36:6+3)-2

Интересным, но более трудным является обратное упражнение: расставить скобки так, чтобы выражение имело заданное значение:

72-24:6+2=66

72-24:6+2=6

72-24:6+2=10

72-24:6+2=69

Также интересными являются упражнения следующего вида:

1. Расставьте скобки так, чтобы равенства были верными:

25-17:4=2 3*6-4=6

24:8-2=4

2. Поставьте вместо звездочек знаки "+" или "-" так, чтобы получились верные равенства:

38*3*7=34

38*3*7=28

38*3*7=42

38*3*7=48

3. Поставьте вместо звездочек знаки арифметических действий так, чтобы равенства были верными:

12*6*2=4

12*6*2=70

12*6*2=24

12*6*2=9

12*6*2=0

Выполняя такие упражнения, учащиеся убеждаются в том, что значение выражения может измениться, если изменяется порядок действий.

Для усвоения правил порядка действий необходимо в 3 и 4 классах включать все более усложняющиеся выражения, при вычислении значений которых ученик применял бы каждый раз не одно, а два или три правила порядка выполнения действий, например:

90*8- (240+170)+190,

469148-148*9+(30 100 - 26909).

При этом числа следует подбирать так, чтобы они допускали выполнение действий в любом порядке, что создает условия для сознательного применения изученных правил.

1.3 Ознакомление с преобразованием выражений

Преобразование выражения - это замена данного выражения другим, значение которого равно значению данного выражения. Учащиеся выполняют такие образования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них.

При изучении каждого правила учащиеся убеждаются в том, что в выражениях определенного вида можно выполнять действия по-разному, но значение выражения при этом не изменяется. В дальнейшем знания свойств действий учащиеся применяют для преобразования заданных выражений в равные им выражения. Например, предлагаются задания вида: продолжить запись так, чтобы знак "=" сохранился:

56- (20+1)=56-20...

(10+5) * 4=10*4...

60:(2*10)=60:10...

Выполняя первое задание, учащиеся рассуждают так: слева из 56 вычитают сумму чисел 20 и 1, справа из 56 вычли 20; чтобы справа получилось столько же, сколько слева, надо справа еще вычесть 1. Аналогично преобразуются другие выражения, т.е., прочитав выражение, ученик вспоминает соответствующее правило и, выполняя действия по правилу, получает преобразованное выражение. Чтобы убедиться в правильности преобразования, дети вычисляют значения заданного и преобразованного выражений и сравнивают их. Применяя знания свойств действий для обоснования приемов вычислений, учащиеся 2-4 классов выполняют преобразования выражений вида:

54+30=(50+4)+20=(50+20)+4=70+4=74

72:3=(60+12):3=60:3+12:3=24

16 * 40=16 * (3 * 10)=(16 * 3) * 10=540

Здесь также необходимо, чтобы учащиеся не только поясняли, на основе чего получают каждое последующее выражение, но и понимали, что все эти выражения соединены знаком " = ", потому что имеют одинаковые значения. Для этого иногда следует предлагать детям вычислять значения выражений и сравнивать их. Это предупреждает ошибки вида:

75-30=70-30=40+5=45,

24*12=(10+2)=24*10 +24*2=288.

Учащиеся 2 - 3 классов выполняют преобразование выражений не только на основе свойств действии, но и на основе определений действий. Например, сумму одинаковых слагаемых заменяют произведением: 6+6+6=6 * 3, и наоборот: 9 * 4=9+9+9+9. Опираясь также на смысл действия умножения, преобразуют более сложные выражения: 8 * 4+8=8 * 5, 7 * 6 - 7 =7 * 5.

На основе вычислений и анализа специально подобранных выражений учащихся 3 класса подводят к выводу о том, что если в выражениях со скобками скобки не влияют на порядок действий, то их можно не ставить: (30+20)+10=30+20+10, (10-6):4=10-6:4 и т.д. В дальнейшем, используя изученные свойства действий и правила порядка действий, учащиеся упражняются в преобразовании выражений со скобками в тождественные им выражения без скобок. Например, предлагается записать данные выражения без скобок так, чтобы их значения не изменились: (65+30) - 20 (20+4) * 3

96 - (46+30)

(40+24):4

Объясняя решение первого из заданных выражений на основе правила вычитания числа из суммы, дети заменяют его выражениями: 65+30 - 20, 65 - 20+30, 30 - 20+65, поясняя порядок выполнения действий в них. Выполняя такие упражнения, учащиеся убеждаются, что значение выражения не меняется при изменении порядка действий только в том случае, если при этом применяются свойства действий.

Таким образом, знакомство школьников начальных классов с понятием выражение тесно связано с формированием вычислительных умений и навыков. В то же время введение понятия выражения позволяет организовать соответствующую работу по развитию математической речи учащихся.

Лекция 2. Буквенная символика, равенства, неравенства, уравнения

2.1 Методика ознакомления с буквенной символикой

В соответствии с программой по математике буквенная символика вводится в 3 классе.

Здесь учащиеся знакомятся с буквой а, как символом для обозначения неизвестного числа или одного из компонентов выражения при решении выражений вида: запиши вместо "окошечка" букву а. Найти значения суммы а+6, если а=8, а=7. Затем на последующих уроках знакомятся с некоторыми буквами латинского алфавита, обозначающими один из компонентов в выражении. С буквой х, как символом для обозначения неизвестного числа при решении уравнений вида: а+х=в, х - с =в - знакомятся в 4 четверти в 3 классе.

Введение буквы как символа для обозначения переменной позволяет уже в начальных классах начать работу над формированием понятия переменной, раньше приобщить детей к математическому языку символов.

Подготовительная работа к раскрытию смысла буквы как символа для обозначения переменной проводится в начале учебного года в 3 классе. На этом первом этапе дети знакомятся с некоторыми буквами латинского алфавита (а, в, с, d, k) для обозначения переменной, т.е. одного из компонентов в выражении.

При введении буквенной символики для обозначения числовой переменной важную роль в системе упражнений играет умелое комбинирование индуктивного и дедуктивного методов. В соответствии с этим упражнения предусматривают переходы от числовых выражений к буквенным и, обратно, от буквенных выражений к числовым. Например, на доску вывешивается плакат с тремя карманами, на которых написано: "1 слагаемое", "2 слагаемое", "сумма".

В процессе беседы с учениками учитель заполняет карманы плаката карточками с записанными на них числами и математическими выражениями:

Далее выясняется, можно ли еще составить выражения, сколько таких выражений можно составить. Дети составляют другие выражения и находят в них общее: одинаковое действие - сложение и различное - разные слагаемые. Учитель поясняет, что, вместо того, чтобы записывать разные числа, можно обозначить любое число, которое может быть слагаемым, какой-нибудь буквой, например а, любое число, которое может быть вторым слагаемым, например, в. Тогда сумму можно обозначить так: а+ в (соответствующие карточки выставляются в карманы плаката).

Учитель поясняет, что а+в также математическое выражение, только в нем слагаемые обозначены буквами каждая из букв обозначает любые числа. Эти числа называются значениями букв.

Аналогично вводится разность чисел как обобщенная запись числовых выражений. Чтобы учащиеся осознали, что буквы, входящие в выражение, например, в+с, могут принимать множество числовых значений, а само буквенное выражение является обобщенной записью числовых выражений, предусматриваются упражнения на переход от буквенных выражений к числовым.

Учащиеся убеждаются, что, придавая буквам личные числовые значения, можно получить много, сколько угодно числовых выражений. В таком же плане проводится работа по конкретизации буквенного выражения - разность чисел.

Далее в связи с работой над выражениями раскрывается понятие постоянной величины. С этой целью рассматриваются выражения, в которых постоянная величина фиксируется с помощью числа, например: а±12, 8±с. Здесь, как и на первом этапе, предусматриваются упражнения на переход от числовых выражений к выражениям, записанным с помощью букв и цифр, и обратно.

С этой целью на первых порах используются плакат с тремя карманами.

Заполняя карманы плаката карточками с записанными на них числами и математическими выражениями, учащиеся замечают, что значения первого слагаемого изменяются, а второго - не изменяются.

Далее выясняется, что любое число, которое может быть значением первого слагаемого, можно обозначить какой-нибудь буквой, например, d.

Учитель поясняет, что второе слагаемое можно записать с помощью чисел, тогда сумму чисел можно записать так: т + 8, и карточки вставляются в соответствующие карманы плаката.

Аналогичным образом можно получить математические выражения вида: 17±а, в ±30, а позднее - выражения вида: 7* в, с*4, а:8, 48:в.

В 4 классе проводятся упражнения вида: Найди значения выражения а:в, если

а=3 400 и в=2;

а=2 800 и в=7.

Когда учащиеся уясняют смысл буквенной символики, можно использовать буквы в качестве средства обобщения формируемых у них знаний.

Конкретной базой для использования буквенной символики как инструмента обобщения служат знания об арифметических действиях и те знания, которые формируются на их основе.

К ним относятся понятия об арифметических действиях, их свойствах, о связях между компонентами и результатами действий, об изменении результатов арифметических действий в зависимости от изменения одного из компонентов и т.п.

Таким образом, использование буквенной символики способствует повышению уровня обобщения знаний, приобретаемых учащимися начальных классов, и готовит их к изучению систематического курса алгебры в следующих классах.

2.2 Числовые равенства, неравенства

Понятие о равенствах, неравенствах и уравнениях раскрывается во взаимосвязи. Работа над ними ведется с 1 класса, органически сочетаясь с изучением арифметического материала.

По новой программе ставится задача научить детей выполнять сравнение чисел, а также сравнение выражений с целью установления отношений "больше", "меньше", "равно"; научить записывать результаты сравнения с помощью знаков ">", "<", "=" и читать полученные равенства и неравенства.

Числовые равенства и неравенства учащиеся получают на основе сравнения заданных чисел или арифметических выражений. Первоначально у младших Школьников формируются понятия только о верных Равенствах и неравенствах (5>4, 6<7, 8=8).

Впоследствии, когда учащиеся накопят опыт работы над выражениями и неравенствами с переменной, после рассмотрения понятий истинного и ложного (верного и неверного) высказывания переходят к такому определению понятий равенства и неравенства, по которым любые два числа, два выражения, соединенные одним из знаков "больше", "меньше" называется неравенством. При этом различают верные и неверные равенства и неравенства. В 3 классе предлагаются такие упражнения: проверь, верны ли данные равенства (4 четверть): 760 - 400=90*4; 630:7=640:8.

Но этих упражнений мало. В 4 классе предлагаются аналогичные упражнения и другие, вида: проверь, верны ли неравенства: 478*24<478* (3*9); 356*10*6>356*16.

Ознакомление с равенствами и неравенствами в начальных классах непосредственно связывается с изучением нумерации и арифметических действий. математический алгебра уравнение

Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется, как известно, с помощью установления взаимно-однозначного соответствия. Этому способу сравнения множеств учат детей в подготовительный период и в начале изучения нумерации чисел первого десятка. Попутно выполняется счет элементов множеств и сравнение полученных чисел. В дальнейшем при сравнении чисел учащиеся опираются на их место в натуральном ряду: 9<10, потому что при счете число 9 называют перед числом 10, и т.д.

Установленные отношения записываются с помощью знаков ">", "<", "=", учащиеся упражняются в чтении и записи равенств и неравенств. Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначны: чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу сравнения соответствующих разрядных чисел, начиная с высшего разряда.

Сравнение именованных чисел сначала выполняется с опорой на сравнение самих значений величин, а потом осуществляется на основе сравнения отвлеченных чисел, для чего заданные именованные числа выражаются в одинаковых единицах измерения.

Сравнение именованных чисел вызывает большие трудности у учащихся, поэтому, чтобы научить этой операции, надо систематически во 2-4 классах предлагать разнообразные упражнения:

1 дм * 1 см, 2 дм * 2 см

Замените равным числом: 7 км 500 м = _____ м

3) Подберите числа таким образом, чтобы запись была верна: ____ ч < ____ мин, ___ см=__ дм и т.д.

4) Проверить верные или неверные равенства даны, исправьте знак, если равенства неверны:

4 т 8 ц=480 кг, 100 мин.=1 ч, 2 м 5 см=250 см.

Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и. вычитания в пределах 10 дети длительное время упражняются в сравнении выражения и числа. Первые неравенства вида 3+1>3, 3 - 1<3 полезно получать из равенства (3=3), сопровождая преобразования соответствующими операциями над множествами. В дальнейшем выражение и число учащиеся сравнивают, не прибегая к операциям над множествами: находят значение выражения и сравнивают его с заданным числом, что отражается в записях:

5+3>5

2<7-4

7=4+3

8>5

2<3

7=7

После знакомства с названиями выражений учащиеся читают равенства и неравенства так: сумма чисел 5 и 3 больше, чем 5.

Опираясь на операции над множествами и сравнение множеств, учащиеся практически усваивают важные свойства равенств и неравенств (если а=в, то в=а). Сравнить два выражения - значит, сравнить их значения. Сравнение чисел и выражений впервые включается при изучении чисел в пределах 20, а затем при изучении действий во всех концентрах эти упражнения систематически предлагаются детям.

При изучении действий в других концентрах упражнения на сравнение выражений усложняются: более сложными становятся выражения, учащимся предлагаются задания вставить в одно из выражений подходящее число так, чтобы получить верные равенства ила неравенства, составить из данных выражений верные равенства или верные неравенства.

Таким образом, при изучении всех концентров упражнения на сравнение чисел и выражений, с одной стороны, способствуют формированию понятий о равенствах и неравенствах, а с другой стороны, усвоению знаний о нумерации и арифметических действиях, а также выработке вычислительных навыков.

2.3 Методика ознакомления с неравенствами с переменной

Неравенства с переменной вида: х+3 < 7, 10 - х >5 вводятся в 3 классе. Сначала переменная обозначается не буквой, а "окошечком", затем обозначается буквой.

Термины "решить неравенство", "решение неравенства" не вводятся в начальных классах, поскольку во многих случаях ограничиваются подбором только нескольких значений переменной, при котором получается верное неравенство. Упражнения выполняются под руководством учителя.

Упражнения с неравенствами закрепляют вычислительные навыки, а также помогают усвоению арифметических знаний. Подбирая значения буквы в неравенствах и равенствах вида: 5 + х = 5, 5 - х =5 10 * х=10, 10* х <10, учащиеся закрепляют знания особых случаев действий. Но самым важным является то, что работая с неравенствами, учащиеся закрепляют представление о переменной и подготавливаются к решению неравенств в 5 классе. В соответствии с программой в 1-4 классах рассматриваются упражнения первой степени с одним неизвестным вида: 7+х=10, х* (17 - 10)=70.

Упражнения в начальных классах рассматриваются как верные равенства, решение уравнения сводится к отыскиванию того значения буквы (неизвестного числа), при котором данное выражение имеет указанное значение. Нахождение неизвестного числа в таких равенствах выполняется на основе знания связи между результатом и компонентами арифметических действий. Эти требования программы определяют методику работы над уравнениями,

2.4 Методика изучения уравнений

На подготовительном этапе к введению первых уравнений при изучении сложения и вычитания в пределах 10 учащиеся усваивают связь между суммой и слагаемыми. Кроме того, к этому времени дети овладевают умением сравнивать выражение и число и получают первые представления о числовых равенствах вида: 8=5+3, 6+4=40. Большое значение в плане подготовки к введению уравнений имеют упражнения на подбор пропущенного числа в равенствах вида: 4+*=6, 5- *=2, В процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным может быть не только сумма или разность, но и одно из слагаемых.

Понятие об уравнении вводится в 3 классе. Решаются уравнения устно, способом подбора, т.е. детям предлагают простые уравнения вида: х + 3=5. Для решения таких уравнений дети вспоминают состав чисел в пределах 10, в данном случае состав числа 5 (3 и 2), значит, х=2.

В 4 классе учитель показывает запись решения уравнения, опираясь на знания детей о связях между компонентами и результатом арифметических действий. Например, 6+х=15. Нам неизвестно второе слагаемое, Чтобы получить второе слагаемое надо из суммы вычесть первое слагаемое.

Запись решения:

6+х=15

х=15-6

х=9

Проверка:

6+9=15

15=15

Учащимся надо объяснить, что когда производим проверку, надо обязательно после подстановки вместо х полученного числа, найти значение полученного выражения.

Позже, на следующем этапе, уравнения решаются на основе знания правил нахождения неизвестного компонента.

На каждый случай отводится отдельный урок.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.

    реферат [118,9 K], добавлен 31.01.2009

  • Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа [1,9 M], добавлен 06.05.2010

  • Теоретические сведения по теме "Признаки равенства треугольников". Методика изучения темы "Признаки равенства треугольников". Тема урока "Треугольник. Виды треугольников". "Свойства равнобедренного и равностороннего треугольников".

    курсовая работа [30,5 K], добавлен 11.01.2004

  • Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.

    презентация [103,1 K], добавлен 29.03.2016

  • Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.

    реферат [286,2 K], добавлен 06.08.2013

  • Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.

    научная работа [47,7 K], добавлен 05.05.2010

  • Вид уравнения Риккати при произвольном дробно-линейном преобразовании зависимой переменной. Свойства отражающей функции, ее построение для нелинейных дифференциальных уравнений первого порядка. Формулировка и доказательства леммы для ОФ уравнения Риккати.

    курсовая работа [709,5 K], добавлен 22.11.2014

  • Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.

    курсовая работа [235,2 K], добавлен 01.02.2015

  • Систематизация сведений о линейных и квадратичных зависимостях и связанных с ними уравнениях и неравенствах. Выделение полного квадрата, как метод решения некоторых нестандартных задач. Свойства функции |х|. Уравнения и неравенства, содержащие модули.

    дипломная работа [3,0 M], добавлен 25.06.2010

  • Анализ особенностей разработки вычислительной программы. Общая характеристика метода простых итераций. Знакомство с основными способами решения нелинейного алгебраического уравнения. Рассмотрение этапов решения уравнения методом половинного деления.

    лабораторная работа [463,7 K], добавлен 28.06.2013

  • Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.

    курсовая работа [942,4 K], добавлен 21.12.2009

  • История возникновения дифференциальных исчислений. Изучение особенностей дифференциального уравнения I порядка. Описание соотношения, связывающего функцию и ее производные. Рассмотрение метода изоклин. Построение интегральных кривых методом изоклин.

    курсовая работа [458,4 K], добавлен 17.02.2016

  • Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.

    лекция [187,9 K], добавлен 17.12.2010

  • Понятие многочленов и их свойства. Сущность метода неопределённых коэффициентов. Разложения многочлена на множители. Максимальное число корней многочлена над областью целостности. Методические рекомендации по изучению темы "Многочлены" в школьном курсе.

    дипломная работа [733,7 K], добавлен 20.07.2011

  • Сущность и методика определения алгебраического числа, оценка существующего поля. Рациональные приближения алгебраических чисел. Задача построения уравнения с заданными корнями. Приводимые и неприводимые многочлены. Трансцендентные числа Лиувилля.

    курсовая работа [219,6 K], добавлен 23.03.2015

  • Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.

    лекция [520,6 K], добавлен 18.08.2012

  • Система-дополнение упражнений по алгебре для 10-го класса. Методика организации учителем проверки и возможные случаи выбора решения учениками для всех типов уравнений. Примеры решения логарифмических уравнений повариантно и таблица проверки результатов.

    методичка [720,5 K], добавлен 24.06.2008

  • Способы задания, предел и непрерывность функции. Свойства неопределенного интеграла. Понятие числового ряда и свойства сходящихся рядов. Порядок дифференциального уравнения. Случайные события и операции над ними. Классическое определение вероятности.

    учебное пособие [532,5 K], добавлен 23.01.2014

  • Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.

    презентация [272,9 K], добавлен 17.09.2013

  • Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.

    реферат [2,0 M], добавлен 18.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.