Система массового обслуживания с ожиданием
Особенности системы массового обслуживания. Типы ограничений, наложенных на ожидание. Получение системы бесконечного числа дифференциальных уравнений для системы. Формулы Эрланга для вероятностей состояний системы при установившемся режиме обслуживания.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 10.06.2015 |
Размер файла | 150,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Система массового обслуживания с ожиданием
Система массового обслуживания называется системой с ожиданием, если заявка, заставшая все каналы занятыми, становится в очередь и ждет, пока не освободится какой-нибудь канал.
Если время ожидания заявки в очереди ничем не ограничено, то система называется «чистой системой с ожиданием». Если оно ограничено какими-то условиями, то система называется «системой смешанного типа». Это промежуточный случай между чистой системой с отказами и чистой системой с ожиданием.
Для практики наибольший интерес представляют именно системы смешанного типа.
Ограничения, наложенные на ожидание, могут быть различного типа. Часто бывает, что ограничение накладывается на время ожидания заявки в очереди; считается, что оно ограничено сверху каким-то сроком , который может быть как строго определенным, так и случайным. При этом ограничивается только срок ожидания в очереди, а начатое обслуживание доводится до конца, независимо от того, сколько времени продолжалось ожидание (например, клиент в парикмахерской, сев в кресло, обычно уже не уходит до конца обслуживания). В других задачах естественнее наложить ограничение не на время ожидания в очереди, а на общее время пребывания заявки в системе (например, воздушная цель может пробыть в зоне стрельбы лишь ограниченное время и покидает ее независимо от того, кончился обстрел или нет). Наконец, можно рассмотреть и такую смешанную систему (она ближе всего к типу торговых предприятий, торгующих предметами не первой необходимости), когда заявка становится в очередь только в том случае, если длина очереди не слишком велика. Здесь ограничение накладывается на число заявок в очереди.
В системах с ожиданием существенную роль играет так называемая «дисциплина очереди». Ожидающие заявки могут вызываться на обслуживание как в порядке очереди (раньше прибывший раньше и обслуживается), так и в случайном, неорганизованном порядке. Существуют системы массового обслуживания «с преимуществами», где некоторые заявки обслуживаются предпочтительно перед другими («генералы и полковники вне очереди»).
Каждый тип системы с ожиданием имеет свои особенности и свою математическую теорию. Многие из них описаны, например, в книге В. В. Гнеденко «Лекции по теории массового обслуживания».
Здесь мы остановимся только на простейшем случае смешанной системы, являющемся естественным обобщением задачи Эрланга для системы с отказами. Для этого случая мы выведем дифференциальные уравнения, аналогичные уравнениям Эрланга, и формулы для вероятностей состояний в установившемся режиме, аналогичные формулам Эрланга.
Рассмотрим смешанную систему массового обслуживания с каналами при следующих условиях. На вход системы поступает простейший поток заявок с плотностью . Время обслуживания одной заявки - показательное, с параметром
Заявка, заставшая все каналы занятыми, становится в очередь и ожидает обслуживания; время ожидания ограничено некоторым сроком ; если до истечения этого срока заявка не будет принята к обслуживанию, то она покидает очередь и остается необслуженной. Срок ожидания будем считать случайным и распределенным по показательному закону
где параметр - величина, обратная среднему сроку ожидания:
Параметр полностью аналогичен параметрам и потока заявок и «потока освобождений». Его можно интерпретировать, как плотность «потока уходов» заявки, стоящей в очереди. Действительно, представим себе заявку, которая только и делает, что становится в очередь и ждет в ней, пока не кончится срок ожидания , после чего уходит и сразу же снова становится в очередь. Тогда «поток уходов» такой заявки из очереди будет иметь плотность .
Очевидно, при система смешанного типа превращается в чистую систему с отказами; при она превращается в чистую систему с ожиданием.
Заметим, что при показательном законе распределения срока ожидания пропускная способность системы не зависит от того, обслуживаются ли заявки в порядке очереди или в случайном порядке: для каждой заявки закон распределения оставшегося времени ожидания не зависит от того, сколько времени заявка уже стояла в очереди.
Благодаря допущению о пуассоновском характере всех потоков событий, приводящих к изменениям состояний системы, процесс, протекающий в ней, будет марковским. Напишем уравнения для вероятностей состояний системы. Для этого, прежде всего, перечислим эти состояния. Будем их нумеровать не по числу занятых каналов, а по числу связанных с системой заявок. Заявку будем называть «связанной с системой», если она либо находится в состоянии обслуживания, либо ожидает очереди. Возможные состояния системы будут:
- ни один канал не занят (очереди нет),
- занят ровно один канал (очереди нет),
- занято ровно каналов (очереди нет),
- заняты все каналов (очереди нет),
- заняты все каналов, одна заявка стоит в очереди,
- заняты все каналов, заявок стоят в очереди,
Число заявок , стоящих в очереди, в наших условиях может быть сколь угодно большим. Таким образом, система имеет бесконечное (хотя и счетное) множество состояний. Соответственно, число описывающих ее дифференциальных уравнений тоже будет бесконечным.
Очевидно, первые дифференциальных уравнений ничем не будут отличаться от соответствующих уравнений Эрланга:
Отличие новых уравнений от уравнений Эрланга начнется при . Действительно, в состояние система с отказами может перейти только из состояния ; что касается системы с ожиданием, то она может перейти в состояние не только из , но и из (все каналы заняты, одна заявка стоит в очереди).
Составим дифференциальное уравнение для . Зафиксируем момент и найдем - вероятность того, что система в момент будет в состоянии . Это может осуществиться тремя способами:
1) в момент система уже была в состоянии , а за время не вышла из него (не пришла ни одна заявка и ни один из каналов не освободился);
2) в момент система была в состоянии , а за время перешла в состояние (пришла одна заявка);
3) в момент система была в состоянии (все каналы заняты, одна заявка стоит в очереди), а за время перешла в (либо освободился один канал и стоящая в очереди заявка заняла его, либо стоящая в очереди заявка ушла в связи с окончанием срока).
Имеем:
,
откуда
.
Вычислим теперь при любом - вероятность того, что в момент все каналов будут заняты и ровно заявок будут стоять в очереди. Это событие снова может осуществиться тремя способами:
1) в момент система уже была в состоянии , а за время это состояние не изменилось (значит, ни одна заявка не пришла, ни один капал не освободился и ни одна из стоящих в очереди заявок не ушла);
2) в момент система была в состоянии , а за время перешла в состояние (т. е. пришла одна заявка);
3) в момент система была в состоянии , а за время перешла в состояние (для этого либо один из каналов должен освободиться, и тогда одна из стоящих в очереди заявок займет его, либо одна из стоящих в очереди заявок должна уйти в связи с окончанием срока).
Следовательно:
,
откуда
.
Таким образом, мы получили для вероятностей состояний систему бесконечного числа дифференциальных уравнений:
(19.10.1)
Уравнения (19.10.1) являются естественным обобщением уравнений Эрланга на случай системы смешанного типа с ограниченным временем ожидания. Параметры в этих уравнениях могут быть как постоянными, так и переменными. При интегрировании системы (19.10.1) нужно учитывать, что хотя теоретически число возможных состояний системы бесконечно, но на практике вероятности при возрастании становятся пренебрежимо малыми, и соответствующие уравнения могут быть отброшены.
Выведем формулы, аналогичные формулам Эрланга, для вероятностей состояний системы при установившемся режиме обслуживания (при ). Из уравнений (19.10.1), полагая все постоянными, а все производные - равными нулю, получим систему алгебраических уравнений:
(19.10.2)
К ним нужно присоединить условие:
. (19.10.3)
Найдем решение системы (19.10.2).
Для этого применим тот же прием, которым мы пользовались в случае системы с отказами: разрешим первое уравнение относительно подставим во второе, и т. д. Для любого , как и в случае системы с отказами, получим:
. (19.10.4)
Перейдем к уравнениям для . Тем же способом получим:
,
,
и вообще при любом
. (19.10.5)
В обе формулы (19.10.4) и (19.10.5) в качестве сомножителя входит вероятность . Определим ее из условия (19.10.3). Подставляя в него выражения (19.10.4) и (19.10.5) для и , получим:
,
откуда
. (19.10.6)
Преобразуем выражения (19.10.4), (19.10.5) и (19.10.6), вводя в них вместо плотностей и «приведенные» плотности:
(19.10.7)
Параметры и выражают соответственно среднее число заявок и среднее число уходов заявки, стоящей в очереди, приходящиеся на среднее время обслуживания одной заявки.
В новых обозначениях формулы (19.10.4), (19.10.5) и (19.10.6) примут вид:
; (19.10.8)
; (19.10.9)
. (19.10.10)
Подставляя (19.10.10) в (19.10.8) и (19.10.9), получим окончательные выражения для вероятностей состояний системы:
; (19.10.11)
массовый обслуживание эрланг уравнение
. (19.10.12)
Зная вероятности всех состояний системы, можно легко определить другие интересующие нас характеристики, в частности, вероятность того, что заявка покинет систему необслуженной. Определим ее из следующих соображений: при установившемся режиме вероятность того, что заявка покинет систему необслуженной, есть не что иное, как отношение среднего числа заявок, уходящих из очереди в единицу времени, к среднему числу заявок, поступающих в единицу времени. Найдем среднее число заявок уходящих из очереди в единицу времени. Для этого сначала вычислим математическое ожидание числа заявок, находящихся в очереди:
. (19.10.13)
Чтобы получить , нужно умножить на среднюю «плотность уходов» одной заявки и разделить на среднюю плотность заявок , т. е. умножить на коэффициент
.
Получим:
. (19.10.14)
Относительная пропускная способность системы характеризуется вероятностью того, что заявка, попавшая в систему, будет обслужена:
.
Очевидно, что пропускная способность системы с ожиданием, при тех же и , будет всегда выше, чем пропускная способность системы с отказами: в случае наличия ожидания необслуженными уходят не все заявки, заставшие каналов занятыми, а только некоторые. Пропускная способность увеличивается при увеличении среднего времени ожидания
.
Непосредственное пользование формулами (19.10.11), (19.10.12) и (19.10.14) несколько затруднено тем, что в них входят бесконечные суммы. Однако члены этих сумм быстро убывают.
Посмотрим, во что превратятся формулы (19.10.11) и (19.10.12) при и . Очевидно, что при система с ожиданием должна превратиться в систему с отказами (заявка мгновенно уходит из очереди). Действительно, при формулы (19.10.12) дадут нули, а формулы (19.10.11) превратятся в формулы Эрланга для системы с отказами.
Рассмотрим другой крайний случай: чистую систему с ожиданием . В такой системе заявки вообще не уходят из очереди, и поэтому : каждая заявка рано или поздно дождется обслуживания. Зато в чистой системе с ожиданием не всегда имеется предельный стационарный режим при . Можно доказать, что такой режим существует только при , т. е. когда среднее число заявок, приходящееся на время обслуживания одной заявки, не выходит за пределы возможностей -канальной системы. Если же , число заявок, стоящих в очереди, будет с течением времени неограниченно возрастать.
Предположим, что , и найдем предельные вероятности для чистой системы с ожиданием. Для этого положим в формулах (19.9.10), (19.9.11) и (19.9.12) . Получим:
,
или, суммируя прогрессию (что возможно только при ),
. (19.10.15)
Отсюда, пользуясь формулами (19.10.8) и (19.10.9), найдем
, (19.10.16)
и аналогично для
. (19.10.17)
Среднее число заявок, находящихся в очереди, определяется из формулы (19.10.13) при :
. (19.10.18)
Пример 1. На вход трехканальной системы с неограниченным временем ожидания поступает простейший поток заявок с плотностью (заявки в час). Среднее время обслуживания одной заявки мин. Определить, существует ли установившийся режим обслуживания; если да, то найти вероятности , вероятность наличия очереди и среднюю длину очереди .
Решение. Имеем:
;
Так как , установившийся режим существует. По формуле (19.10.16) находим
; ; ; .
Вероятность наличия очереди:
.
Средняя длина очереди по формуле (19.10.18) будет
(заявки).
Размещено на Allbest.ru
...Подобные документы
Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.
курсовая работа [1,4 M], добавлен 15.02.2009Систему дифференциальных уравнений Колмогорова. Решение системы алгебраических уравнений для финальных вероятностей состояний. Графики зависимостей. Тип системы массового обслуживания по характеру входящего потока и распределению времени обслуживания.
контрольная работа [187,7 K], добавлен 01.03.2016Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.
курсовая работа [745,4 K], добавлен 17.12.2009Теория массового обслуживания – область прикладной математики, анализирующая процессы в системах производства, в которых однородные события повторяются многократно. Определение параметров системы массового обслуживания при неизменных характеристиках.
курсовая работа [439,6 K], добавлен 08.01.2009Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.
курсовая работа [374,3 K], добавлен 07.09.2009Примеры процессов размножения и гибели в случае простейших систем массового обслуживания. Математическое ожидание для системы массового обслуживания. Дополнительный поток и бесконечное число приборов. Система с ограничением на время пребывания заявки.
курсовая работа [1003,1 K], добавлен 26.01.2014Общая структура системы массового обслуживания. Каналы и линии связи, вычислительные машины, объединенные общей структурой, число каналов обслуживания. Регулярный поток с ограниченным последействием. Применение различных величин и функций в системе.
курсовая работа [199,4 K], добавлен 13.11.2011Анализ эффективности простейших систем массового обслуживания, расчет их технических и экономических показателей. Сравнение эффективности системы с отказами с соответствующей смешанной системой. Преимущества перехода к системе со смешанными свойствами.
курсовая работа [163,4 K], добавлен 25.02.2012Стационарное распределение вероятностей. Построение математических моделей, графов переходов. Получение уравнения равновесия систем массового обслуживания с различным числом приборов, требованиями различных типов и ограниченными очередями на приборах.
дипломная работа [2,4 M], добавлен 23.12.2012Оптимизация управления потоком заявок в сетях массового обслуживания. Методы установления зависимостей между характером требований, числом каналов обслуживания, их производительностью и эффективностью. Теория графов; уравнение Колмогoрова, потоки событий.
контрольная работа [35,0 K], добавлен 01.07.2015Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.
реферат [402,0 K], добавлен 08.01.2013Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.
курсовая работа [107,2 K], добавлен 06.11.2011Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.
реферат [1,4 M], добавлен 19.06.2008Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа [69,7 K], добавлен 26.02.2012Основные понятия теории массового обслуживания: марковский процесс, простой поток, сеть Джексона. Исследование стационарного распределения сети с ромбовидным контуром: для марковских и немарковских процессов, а также для сети с отрицательными заявками.
дипломная работа [957,4 K], добавлен 17.12.2012Системы дифференциальных уравнений первого порядка. Положение равновесия системы. Численный расчет линеаризованной системы уравнений. Определение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа [3,0 M], добавлен 15.05.2012Характеристика открытой сети массового обслуживания с многорежимными стратегиями обслуживания, в которую поступают обычные положительные заявки и пуассоновские потоки информационных сигналов, оказывающие разовое воздействие на соответствующий узел сети.
курсовая работа [221,8 K], добавлен 02.03.2010Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.
контрольная работа [84,5 K], добавлен 20.07.2010Рассмотрение в теории вероятностей связи между средним арифметическим и математическим ожиданием. Основные формулы математического ожидания дискретного распределения, целочисленной величины, абсолютно непрерывного распределения и случайного вектора.
презентация [55,9 K], добавлен 01.11.2013Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.
практическая работа [103,1 K], добавлен 15.06.2012