Система массового обслуживания с ожиданием

Особенности системы массового обслуживания. Типы ограничений, наложенных на ожидание. Получение системы бесконечного числа дифференциальных уравнений для системы. Формулы Эрланга для вероятностей состояний системы при установившемся режиме обслуживания.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 10.06.2015
Размер файла 150,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Система массового обслуживания с ожиданием

Система массового обслуживания называется системой с ожиданием, если заявка, заставшая все каналы занятыми, становится в очередь и ждет, пока не освободится какой-нибудь канал.

Если время ожидания заявки в очереди ничем не ограничено, то система называется «чистой системой с ожиданием». Если оно ограничено какими-то условиями, то система называется «системой смешанного типа». Это промежуточный случай между чистой системой с отказами и чистой системой с ожиданием.

Для практики наибольший интерес представляют именно системы смешанного типа.

Ограничения, наложенные на ожидание, могут быть различного типа. Часто бывает, что ограничение накладывается на время ожидания заявки в очереди; считается, что оно ограничено сверху каким-то сроком , который может быть как строго определенным, так и случайным. При этом ограничивается только срок ожидания в очереди, а начатое обслуживание доводится до конца, независимо от того, сколько времени продолжалось ожидание (например, клиент в парикмахерской, сев в кресло, обычно уже не уходит до конца обслуживания). В других задачах естественнее наложить ограничение не на время ожидания в очереди, а на общее время пребывания заявки в системе (например, воздушная цель может пробыть в зоне стрельбы лишь ограниченное время и покидает ее независимо от того, кончился обстрел или нет). Наконец, можно рассмотреть и такую смешанную систему (она ближе всего к типу торговых предприятий, торгующих предметами не первой необходимости), когда заявка становится в очередь только в том случае, если длина очереди не слишком велика. Здесь ограничение накладывается на число заявок в очереди.

В системах с ожиданием существенную роль играет так называемая «дисциплина очереди». Ожидающие заявки могут вызываться на обслуживание как в порядке очереди (раньше прибывший раньше и обслуживается), так и в случайном, неорганизованном порядке. Существуют системы массового обслуживания «с преимуществами», где некоторые заявки обслуживаются предпочтительно перед другими («генералы и полковники вне очереди»).

Каждый тип системы с ожиданием имеет свои особенности и свою математическую теорию. Многие из них описаны, например, в книге В. В. Гнеденко «Лекции по теории массового обслуживания».

Здесь мы остановимся только на простейшем случае смешанной системы, являющемся естественным обобщением задачи Эрланга для системы с отказами. Для этого случая мы выведем дифференциальные уравнения, аналогичные уравнениям Эрланга, и формулы для вероятностей состояний в установившемся режиме, аналогичные формулам Эрланга.

Рассмотрим смешанную систему массового обслуживания с каналами при следующих условиях. На вход системы поступает простейший поток заявок с плотностью . Время обслуживания одной заявки - показательное, с параметром

Заявка, заставшая все каналы занятыми, становится в очередь и ожидает обслуживания; время ожидания ограничено некоторым сроком ; если до истечения этого срока заявка не будет принята к обслуживанию, то она покидает очередь и остается необслуженной. Срок ожидания будем считать случайным и распределенным по показательному закону

где параметр - величина, обратная среднему сроку ожидания:

Параметр полностью аналогичен параметрам и потока заявок и «потока освобождений». Его можно интерпретировать, как плотность «потока уходов» заявки, стоящей в очереди. Действительно, представим себе заявку, которая только и делает, что становится в очередь и ждет в ней, пока не кончится срок ожидания , после чего уходит и сразу же снова становится в очередь. Тогда «поток уходов» такой заявки из очереди будет иметь плотность .

Очевидно, при система смешанного типа превращается в чистую систему с отказами; при она превращается в чистую систему с ожиданием.

Заметим, что при показательном законе распределения срока ожидания пропускная способность системы не зависит от того, обслуживаются ли заявки в порядке очереди или в случайном порядке: для каждой заявки закон распределения оставшегося времени ожидания не зависит от того, сколько времени заявка уже стояла в очереди.

Благодаря допущению о пуассоновском характере всех потоков событий, приводящих к изменениям состояний системы, процесс, протекающий в ней, будет марковским. Напишем уравнения для вероятностей состояний системы. Для этого, прежде всего, перечислим эти состояния. Будем их нумеровать не по числу занятых каналов, а по числу связанных с системой заявок. Заявку будем называть «связанной с системой», если она либо находится в состоянии обслуживания, либо ожидает очереди. Возможные состояния системы будут:

- ни один канал не занят (очереди нет),

- занят ровно один канал (очереди нет),

- занято ровно каналов (очереди нет),

- заняты все каналов (очереди нет),

- заняты все каналов, одна заявка стоит в очереди,

- заняты все каналов, заявок стоят в очереди,

Число заявок , стоящих в очереди, в наших условиях может быть сколь угодно большим. Таким образом, система имеет бесконечное (хотя и счетное) множество состояний. Соответственно, число описывающих ее дифференциальных уравнений тоже будет бесконечным.

Очевидно, первые дифференциальных уравнений ничем не будут отличаться от соответствующих уравнений Эрланга:

Отличие новых уравнений от уравнений Эрланга начнется при . Действительно, в состояние система с отказами может перейти только из состояния ; что касается системы с ожиданием, то она может перейти в состояние не только из , но и из (все каналы заняты, одна заявка стоит в очереди).

Составим дифференциальное уравнение для . Зафиксируем момент и найдем - вероятность того, что система в момент будет в состоянии . Это может осуществиться тремя способами:

1) в момент система уже была в состоянии , а за время не вышла из него (не пришла ни одна заявка и ни один из каналов не освободился);

2) в момент система была в состоянии , а за время перешла в состояние (пришла одна заявка);

3) в момент система была в состоянии (все каналы заняты, одна заявка стоит в очереди), а за время перешла в (либо освободился один канал и стоящая в очереди заявка заняла его, либо стоящая в очереди заявка ушла в связи с окончанием срока).

Имеем:

,

откуда

.

Вычислим теперь при любом - вероятность того, что в момент все каналов будут заняты и ровно заявок будут стоять в очереди. Это событие снова может осуществиться тремя способами:

1) в момент система уже была в состоянии , а за время это состояние не изменилось (значит, ни одна заявка не пришла, ни один капал не освободился и ни одна из стоящих в очереди заявок не ушла);

2) в момент система была в состоянии , а за время перешла в состояние (т. е. пришла одна заявка);

3) в момент система была в состоянии , а за время перешла в состояние (для этого либо один из каналов должен освободиться, и тогда одна из стоящих в очереди заявок займет его, либо одна из стоящих в очереди заявок должна уйти в связи с окончанием срока).

Следовательно:

,

откуда

.

Таким образом, мы получили для вероятностей состояний систему бесконечного числа дифференциальных уравнений:

(19.10.1)

Уравнения (19.10.1) являются естественным обобщением уравнений Эрланга на случай системы смешанного типа с ограниченным временем ожидания. Параметры в этих уравнениях могут быть как постоянными, так и переменными. При интегрировании системы (19.10.1) нужно учитывать, что хотя теоретически число возможных состояний системы бесконечно, но на практике вероятности при возрастании становятся пренебрежимо малыми, и соответствующие уравнения могут быть отброшены.

Выведем формулы, аналогичные формулам Эрланга, для вероятностей состояний системы при установившемся режиме обслуживания (при ). Из уравнений (19.10.1), полагая все постоянными, а все производные - равными нулю, получим систему алгебраических уравнений:

(19.10.2)

К ним нужно присоединить условие:

. (19.10.3)

Найдем решение системы (19.10.2).

Для этого применим тот же прием, которым мы пользовались в случае системы с отказами: разрешим первое уравнение относительно подставим во второе, и т. д. Для любого , как и в случае системы с отказами, получим:

. (19.10.4)

Перейдем к уравнениям для . Тем же способом получим:

,

,

и вообще при любом

. (19.10.5)

В обе формулы (19.10.4) и (19.10.5) в качестве сомножителя входит вероятность . Определим ее из условия (19.10.3). Подставляя в него выражения (19.10.4) и (19.10.5) для и , получим:

,

откуда

. (19.10.6)

Преобразуем выражения (19.10.4), (19.10.5) и (19.10.6), вводя в них вместо плотностей и «приведенные» плотности:

(19.10.7)

Параметры и выражают соответственно среднее число заявок и среднее число уходов заявки, стоящей в очереди, приходящиеся на среднее время обслуживания одной заявки.

В новых обозначениях формулы (19.10.4), (19.10.5) и (19.10.6) примут вид:

; (19.10.8)

; (19.10.9)

. (19.10.10)

Подставляя (19.10.10) в (19.10.8) и (19.10.9), получим окончательные выражения для вероятностей состояний системы:

; (19.10.11)

массовый обслуживание эрланг уравнение

. (19.10.12)

Зная вероятности всех состояний системы, можно легко определить другие интересующие нас характеристики, в частности, вероятность того, что заявка покинет систему необслуженной. Определим ее из следующих соображений: при установившемся режиме вероятность того, что заявка покинет систему необслуженной, есть не что иное, как отношение среднего числа заявок, уходящих из очереди в единицу времени, к среднему числу заявок, поступающих в единицу времени. Найдем среднее число заявок уходящих из очереди в единицу времени. Для этого сначала вычислим математическое ожидание числа заявок, находящихся в очереди:

. (19.10.13)

Чтобы получить , нужно умножить на среднюю «плотность уходов» одной заявки и разделить на среднюю плотность заявок , т. е. умножить на коэффициент

.

Получим:

. (19.10.14)

Относительная пропускная способность системы характеризуется вероятностью того, что заявка, попавшая в систему, будет обслужена:

.

Очевидно, что пропускная способность системы с ожиданием, при тех же и , будет всегда выше, чем пропускная способность системы с отказами: в случае наличия ожидания необслуженными уходят не все заявки, заставшие каналов занятыми, а только некоторые. Пропускная способность увеличивается при увеличении среднего времени ожидания

.

Непосредственное пользование формулами (19.10.11), (19.10.12) и (19.10.14) несколько затруднено тем, что в них входят бесконечные суммы. Однако члены этих сумм быстро убывают.

Посмотрим, во что превратятся формулы (19.10.11) и (19.10.12) при и . Очевидно, что при система с ожиданием должна превратиться в систему с отказами (заявка мгновенно уходит из очереди). Действительно, при формулы (19.10.12) дадут нули, а формулы (19.10.11) превратятся в формулы Эрланга для системы с отказами.

Рассмотрим другой крайний случай: чистую систему с ожиданием . В такой системе заявки вообще не уходят из очереди, и поэтому : каждая заявка рано или поздно дождется обслуживания. Зато в чистой системе с ожиданием не всегда имеется предельный стационарный режим при . Можно доказать, что такой режим существует только при , т. е. когда среднее число заявок, приходящееся на время обслуживания одной заявки, не выходит за пределы возможностей -канальной системы. Если же , число заявок, стоящих в очереди, будет с течением времени неограниченно возрастать.

Предположим, что , и найдем предельные вероятности для чистой системы с ожиданием. Для этого положим в формулах (19.9.10), (19.9.11) и (19.9.12) . Получим:

,

или, суммируя прогрессию (что возможно только при ),

. (19.10.15)

Отсюда, пользуясь формулами (19.10.8) и (19.10.9), найдем

, (19.10.16)

и аналогично для

. (19.10.17)

Среднее число заявок, находящихся в очереди, определяется из формулы (19.10.13) при :

. (19.10.18)

Пример 1. На вход трехканальной системы с неограниченным временем ожидания поступает простейший поток заявок с плотностью (заявки в час). Среднее время обслуживания одной заявки мин. Определить, существует ли установившийся режим обслуживания; если да, то найти вероятности , вероятность наличия очереди и среднюю длину очереди .

Решение. Имеем:

;

Так как , установившийся режим существует. По формуле (19.10.16) находим

; ; ; .

Вероятность наличия очереди:

.

Средняя длина очереди по формуле (19.10.18) будет

(заявки).

Размещено на Allbest.ru

...

Подобные документы

  • Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.

    курсовая работа [1,4 M], добавлен 15.02.2009

  • Систему дифференциальных уравнений Колмогорова. Решение системы алгебраических уравнений для финальных вероятностей состояний. Графики зависимостей. Тип системы массового обслуживания по характеру входящего потока и распределению времени обслуживания.

    контрольная работа [187,7 K], добавлен 01.03.2016

  • Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.

    курсовая работа [745,4 K], добавлен 17.12.2009

  • Теория массового обслуживания – область прикладной математики, анализирующая процессы в системах производства, в которых однородные события повторяются многократно. Определение параметров системы массового обслуживания при неизменных характеристиках.

    курсовая работа [439,6 K], добавлен 08.01.2009

  • Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.

    курсовая работа [374,3 K], добавлен 07.09.2009

  • Примеры процессов размножения и гибели в случае простейших систем массового обслуживания. Математическое ожидание для системы массового обслуживания. Дополнительный поток и бесконечное число приборов. Система с ограничением на время пребывания заявки.

    курсовая работа [1003,1 K], добавлен 26.01.2014

  • Общая структура системы массового обслуживания. Каналы и линии связи, вычислительные машины, объединенные общей структурой, число каналов обслуживания. Регулярный поток с ограниченным последействием. Применение различных величин и функций в системе.

    курсовая работа [199,4 K], добавлен 13.11.2011

  • Анализ эффективности простейших систем массового обслуживания, расчет их технических и экономических показателей. Сравнение эффективности системы с отказами с соответствующей смешанной системой. Преимущества перехода к системе со смешанными свойствами.

    курсовая работа [163,4 K], добавлен 25.02.2012

  • Стационарное распределение вероятностей. Построение математических моделей, графов переходов. Получение уравнения равновесия систем массового обслуживания с различным числом приборов, требованиями различных типов и ограниченными очередями на приборах.

    дипломная работа [2,4 M], добавлен 23.12.2012

  • Оптимизация управления потоком заявок в сетях массового обслуживания. Методы установления зависимостей между характером требований, числом каналов обслуживания, их производительностью и эффективностью. Теория графов; уравнение Колмогoрова, потоки событий.

    контрольная работа [35,0 K], добавлен 01.07.2015

  • Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.

    реферат [402,0 K], добавлен 08.01.2013

  • Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.

    курсовая работа [107,2 K], добавлен 06.11.2011

  • Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.

    реферат [1,4 M], добавлен 19.06.2008

  • Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.

    контрольная работа [69,7 K], добавлен 26.02.2012

  • Основные понятия теории массового обслуживания: марковский процесс, простой поток, сеть Джексона. Исследование стационарного распределения сети с ромбовидным контуром: для марковских и немарковских процессов, а также для сети с отрицательными заявками.

    дипломная работа [957,4 K], добавлен 17.12.2012

  • Системы дифференциальных уравнений первого порядка. Положение равновесия системы. Численный расчет линеаризованной системы уравнений. Определение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.

    курсовая работа [3,0 M], добавлен 15.05.2012

  • Характеристика открытой сети массового обслуживания с многорежимными стратегиями обслуживания, в которую поступают обычные положительные заявки и пуассоновские потоки информационных сигналов, оказывающие разовое воздействие на соответствующий узел сети.

    курсовая работа [221,8 K], добавлен 02.03.2010

  • Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.

    контрольная работа [84,5 K], добавлен 20.07.2010

  • Рассмотрение в теории вероятностей связи между средним арифметическим и математическим ожиданием. Основные формулы математического ожидания дискретного распределения, целочисленной величины, абсолютно непрерывного распределения и случайного вектора.

    презентация [55,9 K], добавлен 01.11.2013

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа [103,1 K], добавлен 15.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.