Особенности применения векторов к решению геометрических задач
Исследование базиса и составление таблицы умножения для заданных векторов. Особенности и условия применения векторов в процессе доказательства алгебраических неравенств. Вычисление скалярного произведения заданных векторов, условия перпендикулярности.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.06.2015 |
Размер файла | 69,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Задача. Каждое ребро призмы ABCA1B1С1 равно 2.
Точки М и N - середины ребер АВ и A1А. Найти расстояние от точки М до прямой CN, если известно, что угол A1AС paвeн 60° и прямые A1A и АВ перпендикулярны.
Решение
Рассмотрим базис, состоящий из векторов , , и составим таблицу умножения для этих векторов.
* |
а |
b |
с |
|
а |
4 |
0 |
2 |
|
b |
0 |
4 |
2 |
|
с |
2 |
2 |
4 |
Расстояние от точки М до прямой CN равно расстоянию от точки М до её проекции на прямую CN.
Пусть Р - проекция точки М на прямую CN.
Тогда
для некоторого числа х.
Так как и ,
Поскольку прямые и перпендикулярны, то т.е.
.
Раскрывая скобки и пользуясь таблицей умножения для нашего базиса, получаем: .
Тогда .
Искомое расстояние равно
Снова раскрывая скобки и пользуясь таблицей умножения, находим . Таким образом, расстояние от точки М до прямой равно .
Ответ: расстояние равно .
у 6
Задача. В параллелограмма ABCD точка К - середина стороны ВС, а точка М - середина стороны CD. Найдите AD, если АК = 6, АМ = 3, угол КАМ = 60°.
Решение
В качестве базиса выберем векторы и и составим таблицу умножения для векторов этого базиса.
* |
k |
m |
|
k |
36 |
9 |
|
m |
9 |
9 |
По формуле треугольника и .
Так как X - середина ВС, М - середина CD, то и , и получаем систему:
, откуда
Ответ: 4.
Задача. Ребра СА, СВ, СС, треугольной призмы ABCA1В1С1 равны, соответственно 2, 3 и 4 образуют между собой углы ACB = 90°, ACС1 = 45° и BCC1 = 60°. Найдите объём призмы.
Решение
Пусть отрезок С1О является высотой данной призмы. Тогда
Для того, чтобы найти высоту С1О, выберем в качестве базиса векторы
и составим таблицу умножения.
* |
|
|
|
|
|
4 |
0 |
|
|
|
0 |
9 |
6 |
|
|
|
6 |
16 |
Разложим вектор C1O по векторам . Получим: , где , а .
Таким образом .
Коэффициенты х, у находим из условий перпендикулярности вектора C1O с векторами .
вектор алгебраический неравенство
.
Следовательно,
Значит
С1О =
Тогда V = 3·C1O = 3·2 = 6
Ответ: 6.
С помощью векторов можно решать не только геометрические задачи, но и доказывать алгебраические неравенства.
I. Доказать неравенство
Доказательство:
Рассмотрим векторы и .
Их скалярное произведение
Так как , , то, учитывая неравенство , получим .
II. Докажем, что для любых неотрицательных чисел a, b, c справедливо неравенство:
Доказательство:
Рассмотрим векторы и . Их скалярное произведение: , а длины и . Отсюда, учитывая неравенство , получаем
.
Размещено на Allbest.ru
...Подобные документы
Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.
контрольная работа [605,8 K], добавлен 06.05.2012Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.
курсовая работа [491,4 K], добавлен 13.01.2014Вектор - направленный отрезок, имеющий начало и конец, его свойства. Виды определения векторов, действия над ними. Правила сложения векторов, их сумма. Скалярное произведение векторов. Особенности использования векторов. Решение геометрических задач.
контрольная работа [640,1 K], добавлен 18.01.2013Вычисление скалярного и векторного произведений векторов, заданных в прямоугольной декартовой системе координат. Расчет длины ребра пирамиды по координатам ее вершин. Поиск координат симметричной точки. Определение типа линии, описываемой уравнением.
контрольная работа [892,1 K], добавлен 12.05.2016Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.
презентация [98,6 K], добавлен 21.09.2013Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.
реферат [80,9 K], добавлен 28.03.2014Линейные операции над векторами. Скалярное произведение двух векторов. Векторное произведение векторов. Графическое решение систем неравенств. Построение графиков функций с помощью геометрических преобразований. Простейшие геометрические преобразования.
методичка [2,0 M], добавлен 15.06.2015Нахождение собственных значений и векторов линейного преобразования, заданных в некотором базисе матрицей. Составление характеристического уравнения и нахождение семейства векторов и их значения при решении, корни характеристического уравнения.
контрольная работа [44,9 K], добавлен 29.05.2012Пример вычисления определителя второго порядка в общем виде. Свойства векторного произведения и их доказательства. Пример применения правила Крамера для решения систем из n уравнений с n неизвестными. Векторное произведение векторов заданных проекциями.
контрольная работа [297,9 K], добавлен 14.03.2009Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.
курсовая работа [53,4 K], добавлен 29.08.2010Сущность понятия "скалярное произведение векторов". Законы векторного произведения. Практический пример нахождения площади треугольника. Общее понятие о правой и левой тройке. Содержание закона круговой переместительности. Объём треугольной пирамиды.
презентация [373,9 K], добавлен 16.11.2014Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.
реферат [350,1 K], добавлен 22.04.2010Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.
контрольная работа [104,2 K], добавлен 23.01.2012Методика расчета скалярного произведения заданных векторов. Расчет определителей и рангов матриц, нахождение обратных матриц. Разрешение уравнений по методу Крамера, обратной матрицы, а также встроенной функции lsolve. Анализ полученных результатов.
лабораторная работа [86,8 K], добавлен 13.10.2014Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.
контрольная работа [102,5 K], добавлен 04.12.2013Основные определения геометрических векторов. Понятие коллинеарных и равных векторов. Простейшие операции над векторами, их проекция на ось. Понятие угла между векторами. Отсчет угла против часовой стрелки, положительная и отрицательная проекция.
реферат [187,4 K], добавлен 19.08.2009Уравнение прямой линии на плоскости, условия перпендикулярности плоскостей. Вычисления для векторов и их значение, нахождение скалярных произведений, обратная матрица к квадратной матрице и вычисление определителя, бесконечные системы и их признаки.
тест [526,3 K], добавлен 08.03.2012Общее уравнение прямой, переходящей через определенную точку. Условия перпендикулярности прямых. Условие перпендикулярности плоскостей. Свойства медианы треугольника. Нахождение направляющих векторов прямых. Условие параллельности прямой и плоскости.
контрольная работа [87,1 K], добавлен 07.09.2010Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
контрольная работа [87,7 K], добавлен 21.02.2010Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.
презентация [68,5 K], добавлен 21.09.2013