Метод Хука-Дживса

Сущность метода Хука-Дживса для определения свойств и параметров функций, его отличие от других методов данного типа. Алгоритм работы и этапы выполнения метода. Решение задачи минимизирования функции без учета ограничений. Модификации метода Хука-Дживса.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 25.06.2015
Размер файла 32,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В науке существует большое количество методов, с помощью которых определяются те или иные свойства и параметры функций. Эти методы постоянно совершенствовались, уточнялись, получали новое применение.

В этой работе пойдет речь об одном из методов, так называемого, прямого поиска. Это - метод Хука-Дживса. Он применяется для определения минимума функций и переменных. Этот метод, созданный в середине двадцатого столетия применяется и сейчас, так как очень хорошо себя зарекомендовал.

Целю данной работы, является освещения концепций метода Хука-Дживса.

Основными задачами, подлежащими рассмотрению в связи с поставленной целью являются:

- объяснить в чем состоит суть метода Хука-Дживса;

- показать его отличие от других методов данного типа;

- рассмотреть алгоритм работы метода;

- пояснить этапы выполнения метода;

- уточнить в чем состоит модификация данного метода;

- наглядно продемонстрировать работу метода с помощью блок-схем.

Актуальность данной работы заключается в конкретизации и резюмированию знаний об этом методе.

хук дживс функция минимизирование

1. Метод Хука-Дживса

На разработку методов прямого поиска для определения минимума функций и переменных было затрачено много усилий. Методы прямого поиска являются методами, в которых используются только значения функции. Мы рассмотрим подробно лишь один из них. Практика показала, что этот метод эффективен и применим для широкого числа приложений. Рассмотрим функцию двух переменных.

Минимум лежит в точке (x1*,x2*). Простейшим методом поиска является метод покоординатного спуска. Из точки А мы производим поиск минимума вдоль направления оси и, таким образом, находим точку В, в которой касательная к линии постоянного уровня параллельна оси. Затем, производя поиск из точки В направлении оси, получаем точку С, производя поиск параллельно оси, получаем точку D, и т. д. Таким образом, мы приходим к оптимальной точке. Очевидным образом эту идею можно применить для функций n-переменных.

Теоретически данный метод эффективен в случае единственного минимума функции. Но на практике он оказывается слишком медленным. Поэтому были разработаны более сложные методы, использующие больше информации на основании уже полученных значений функции.

Метод Хука-Дживса был разработан в 1961 году, но до сих пор является весьма эффективным и оригинальным. Поиск состоит из последовательности шагов исследующего поиска вокруг базисной точки, за которой в случае успеха следует поиск по образцу. Он применяется для решения задачи минимизирования функции без учета ограничений.

Описание этой процедуры представлено ниже:

А. Выбрать начальную базисную точку b1 и шаг длиной h1 для каждой переменной xj, j = 1, 2,…, n. В приведенной ниже программе для каждой переменной используется шаг h, однако указанная выше модификация тоже может оказаться полезной.

Б. Вычислить f (х) в базисной точке b1 с целью получения сведений о локальном поведении функции f (x). Эти сведения будут использоваться для нахождения подходящего направления поиска по образцу, с помощью которого можно надеяться достичь большего убывания значения функции. Функция f(x) в базисной точке b1, находится следующим образом:

1. Вычисляется значение функции f (b1) в базисной точке b1.

2. Каждая переменная по очереди изменяется прибавлением длины шага. Таким образом, мы вычисляем значение функции f (b1+h1e1), где e1 - единичный вектор в направлении оси x1. Если это приводит к уменьшению значения функции, то b1 заменяется на b1+h1e1. В противном случае вычисляется значение функции f (b1-h-1e1), и если ее значение уменьшилось, то b1 заменяем на b1-h1e1. Если ни один из проделанных шагов не приводит к уменьшению значения функции, то точка b-1 остается неизменной и рассматриваются изменения в направлении оси х2, т. е. находится значение функции f (b1+h2e2) и т. д. Когда будут рассмотрены все n переменные, мы будем иметь новую базисную точку b2.

3. Если b2=b1, т. е. уменьшение функции не было достигнуто, то исследование повторяется вокруг той же базисной точки b1, но с уменьшенной длиной шага. На практике удовлетворительным является уменьшение шага (шагов) в десять раз от начальной длины.

4. Если b2b1, то производится поиск по образцу.

В. При поиске по образцу используется информация, полученная в процессе исследования, и минимизация функции завершается поиском в направлении, заданном образцом. Эта процедура производится следующим образом:

1. Разумно двигаться из базисной точки b2 в направлении b2-b-1, поскольку поиск в этом направлении уже привел к уменьшению значения функции. Поэтому вычислим функцию в точке образца

P1=b1+2(b2-b1).

В общем случае

Pi=bi+2(bi+1-bi).

2. Затем исследование следует продолжать вокруг точки Р1i) .

3. Если наименьшее значение на шаге В, 2 меньше значения в базисной точке b2 (в общем случае bi+1), то получают новую базисную точку b3 (bi+2), после чего следует повторить шаг В, 1. В противном случае не производить поиск по образцу из точки b2 (bi+1), а продолжить исследования в точке b2 (bi+1).

Г. Завершить этот процесс, когда длина шага (длины шагов) будет уменьшена до заданного малого значения.

2. Модифицированный метод Хука-Дживса

Этот метод нетрудно модифицировать и для учета ограничений. Было выдвинуто предложение, что для этого будет вполне достаточно при решении задачи минимизации присвоить целевой функции очень большое значение там, где ограничения нарушаются. К тому же такую идею просто реализовать с помощью программирования.

Нужно проверить, каждая ли точка, полученная в процессе поиска, принадлежит области ограничений. Если каждая, то целевая функция вычисляется обычным путем. Если нет, то целевой функции присваивается очень большое значение. Таким образом, поиск будет осуществляться снова в допустимой области в направлении к минимальной точке внутри этой области.

В блок-схеме №1, демонстрирующей непосредственный алгоритм метода, производится поиск такой базисной точки, значение функции в которой было бы меньше значения, полученного в результате исследования. Также осуществляется контроль над значением шага поиска.

В блок-схеме №2 приведен алгоритм единичного исследования, результатом которого пользуются в блок-схеме №1. Производится пошаговое уточнение значения функции с контролем попадания этого значения в область определения функции.

Заключение

В данной работы были освещены концепции метода Хука-Дживса.

Конкретно, было выполнено следующее:

- объяснено в чем состоит суть метода Хука-Дживса;

- показано его отличие от других методов данного типа;

- рассмотрен алгоритм работы метода;

- были пояснены этапы его выполнения;

- уточнено в чем состоит модификация данного метода;

- наглядно продемонстрирована работа метода с помощью блок-схем.

Основываясь на данной работе и на материалах использованных для ее написания, можно сделать следующие выводы:

- метод Хука-Дживса применим для широкого числа приложений, не смотря на то, что он был разработан в 1961 году, но до сих пор является весьма эффективным и оригинальным;

- метод Хука-Дживса использует информацию на основании уже полученных значений функции, это экономит время работы;

- метод Хука-Дживса нетрудно модифицировать для учета ограничений;

- метод Хука-Дживса прост в реализации с помощью программирования.

Список литературы

1. Б.Банди. Методы оптимизации. - М., 1998 г.

2. Р.Хук, Т.А. Дживс. Прямой поиск решения для числовых и статических проблем. 1961 г.

Размещено на Allbest.ru

...

Подобные документы

  • Поиск оптимального решения. Простейший способ исключения ограничений. Многомерные методы оптимизации, основанные на вычислении целевой функции. Метод покоординатного спуска. Модифицированный метод Хука-Дживса. Исследование на минимум функции Розенброка.

    курсовая работа [697,6 K], добавлен 21.11.2012

  • Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.

    контрольная работа [878,3 K], добавлен 26.12.2012

  • Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.

    контрольная работа [66,3 K], добавлен 06.04.2012

  • Общая схема методов спуска. Метод покоординатного спуска. Минимизация целевой функции по выбранным переменным. Алгоритм метода Гаусса-Зейделя. Понятие градиента функции. Суть метода наискорейшего спуска. Программа решения задачи дискретной оптимизации.

    курсовая работа [90,8 K], добавлен 30.04.2011

  • Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.

    методичка [303,7 K], добавлен 14.03.2011

  • Характеристика важнейших типов сходимости итерационных последовательностей. Специфические особенности применения метода Ньютона для определения кратных корней. Алгоритм нахождения корней трансцендентного уравнения с использованием метода секущих.

    дипломная работа [964,9 K], добавлен 09.06.2019

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.

    реферат [140,2 K], добавлен 27.03.2012

  • Решение задачи глобальной оптимизации. Базовый метод эволюционной стратегии: операции мутации, скрещивания и селекции. Определение параметров управления пробного вектора с помощью самоадаптивного метода. Применение метода C-центроидов, его схема.

    реферат [258,5 K], добавлен 17.01.2014

  • Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.

    лабораторная работа [533,9 K], добавлен 26.04.2014

  • Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.

    курсовая работа [416,0 K], добавлен 09.08.2015

  • Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.

    контрольная работа [253,0 K], добавлен 07.06.2011

  • Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.

    курсовая работа [100,4 K], добавлен 12.05.2009

  • Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методом ветвей и границ. Математическая модель исследуемой задачи, принципы ее формирования и порядок решения.

    курсовая работа [153,2 K], добавлен 25.11.2011

  • Приближенные решения кубических уравнений. Работы Диофанта, Ферма и Ньютона. Интерационный метод нахождения корня уравнения. Геометрическое и алгебраическое описания метода хорд. Погрешность приближенного решения. Линейная скорость сходимости метода.

    презентация [255,1 K], добавлен 17.01.2011

  • Сущность графического метода нахождения оптимального значения целевой функции. Особенности и этапы симплексного метода решения задачи линейного программирования, понятие базисных и небазисных переменных, сравнение численных значений результатов.

    задача [394,9 K], добавлен 21.08.2010

  • Численное решение дифференциальных уравнений с помощью многошагового метода прогноза и коррекции Милна. Суммарная ошибка метода Милна. Применение метода Рунге-Кутта для нахождения первых значений начального отрезка. Абсолютная погрешность значения.

    контрольная работа [694,0 K], добавлен 27.02.2013

  • Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.

    контрольная работа [355,9 K], добавлен 28.02.2011

  • Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.

    методичка [335,0 K], добавлен 02.03.2010

  • Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.

    курсовая работа [393,2 K], добавлен 18.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.