Взаимосвязь видов математических моделей многомерных систем

Определение связи между вектором входа и векторами состояния и выхода. Примеры получения и преобразования моделей. Определение характеристического уравнения объекта. Расчет эквивалентной матрицы передаточных функций, которая связывает векторы состояния.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 22.07.2015
Размер файла 191,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Лекция 15

Взаимосвязь видов математических моделей многомерных систем

Выше были рассмотрены два вида моделей многомерной системы. Установим связь между этими двумя видами. Так как исходной базой для математических моделей являются дифференциальные уравнения, то логичным будет определить связь уравнений состояния с передаточными матрицами САУ. Для этого применим преобразование Лапласа к уравнениям состояния и выхода

(1)

(2)

при нулевых начальных условиях, заменим оригиналы переменных изображениями по Лапласу и получим систему векторно-матричных операторных уравнений

(3)

Определим связь между вектором входа и векторами состояния и выхода. Из первого уравнения системы (3) имеем -

и если матрица не вырожденная, то есть , получим -

(4)

Откуда следует, что

(5)

Подставив (4) в (3), получаем -

,

В результате получаем -

(6)

Вспомним, что компонентами эквивалентных матриц являются передаточные функции системы. Следовательно, выражения (5) и (6) представляют собой универсальные формулы для вычисления всех необходимых для анализа передаточных функций многомерной системы, по которым могут быть получены структурные схемы и частотные характеристики.

Заметим, что каждый элемент эквивалентных матриц (передаточных функций) имеет, по определению обратной матрицы, сомножитель -

То есть полином является общим знаменателем для всех передаточных функций, а уравнение -

(7)

является характеристическим уравнением системы.

Таким образом, мы не только получили связь между математическими моделями во временной и частотной областях, но и универсальные выражения для определения передаточных функций и характеристических уравнений любых линейных объектов или систем управления. Исходными параметрами для выражений (5),(6) и (7) являются матрицы параметров уравнений состояния и выхода. Выполнить преобразования (5),(6) и (7) можно с помощью компьютера, имеющего программы символьной математики, на пример, такие, как Mathematica 3.0 (4.0), разработанные Wolfram Research. в системах второго и третьего порядка эти преобразования можно производить и вручную.

Рассмотрим несколько примеров получения и преобразования моделей.

Пример

Рассмотрим объект, принципиальная электрическая схема которого показана на рис. 1.

Рис. 1

Выполним для этого объекта следующие задачи:

Получить уравнение состояния.

Определить характеристическое уравнение объекта.

Определить передаточную матрицу объекта.

Получение уравнения состояния

Запишем дифференциальные уравнения, описывающие процессы в схеме

(8)

Зададим векторы состояния и входа:

Получаем, что . Запишем уравнение состояния в развернутой форме для нашего случая:

(9)

Раскроем в (9) матричные скобки:

(10)

Приведем систему уравнений (8) к виду (10), используя при отсутствии переменной в правых частях нулевые коэффициенты:

Теперь известны все компоненты матриц параметров, и можно записать уравнение состояния

.

Следовательно, матрицы параметров имеют следующий вид -

(11)

 

Определение характеристического уравнения объекта

Характеристическое уравнение системы определим по матрицам параметров уравнения состояния (11), используя выражение (7) -

(12)

Подставив в (12) выражения для матрицы параметров и единичной матрицы , получим характеристическое уравнение

(13)

 

Определение передаточной матрицы объекта

Определим эквивалентную матрицу передаточных функций, которая связывает векторы состояния и управления по выражению (5), которое для нашего случая имеет вид:

(14)

Матрица может быть определена из (13)

.

Определим обратную матрицу, помня о том, - адъюнкт исходной матрицы представляет собой транспонированную матрицу алгебраических дополнений элементов матрицы, а алгебраические дополнения определяются для каждого элемента исходной матрицы по следующему выражению -

,

где - минор исходной матрицы, полученный вычеркиванием -- ой строки и -го столбца.

.

Окончательно получаем -

Следовательно, получаем передаточные функции объекта

.

Пример

Электродвигатель постоянного тока независимого возбуждения (с постоянными магнитами) как объект управления описывается следующей системой дифференциальных уравнений -

(15)

где - напряжение, подаваемое на двигатель, - скорость и ток двигателя, - параметры двигателя, соответственно момент инерции, сопротивление и индуктивность обмотки якоря, конструктивный коэффициент.

Получение уравнения состояния

Зададим векторы состояния и входа:

Получаем, что . Запишем уравнение состояния в развернутой форме для нашего случая:

(16)

Раскроем в (16) матричные скобки:

(17)

Приведем систему уравнений (15) к виду (17), используя при отсутствии переменной в правых частях нулевые коэффициенты:

Теперь известны все компоненты матриц параметров, и можно записать уравнение состояния в развернутой форме

.

Следовательно, матрицы параметров имеют следующий вид -

(18)

 

Определение характеристического уравнения объекта

Характеристическое уравнение системы определим по матрицам параметров уравнения состояния (18), используя выражение (7) -

(19)

Подставив в (19) выражения для матрицы параметров и единичной матрицы , получим характеристическое уравнение

(20)

 

Определение передаточной матрицы объекта

Определим эквивалентную матрицу передаточных функций, которая связывает векторы состояния и управления по выражению (5), которое для нашего случая имеет вид:

(21)

Матрица может быть определена из (20)

.

Определим обратную матрицу -

.

Окончательно получаем -

Следовательно, получаем передаточные функции объекта

Контрольные вопросы и задачи

Поясните, как связаны между собой модели во временной и частотной области?

Как определить по уравнению состояния характеристическое уравнение?

Как определить по уравнению состояния матрицу передаточных функций системы?

По уравнению состояния

многомерный вектор матрица передаточный

,

описывающему многомерную систему, определить характеристическое уравнение системы.

Ответ:

.

По уравнению состояния

,

описывающему многомерную систему, определить характеристическое уравнение системы.

Ответ:

.

По уравнению состояния

,

описывающему многомерную систему, определить матрицу передаточных функций системы.

Ответ:

.

Размещено на Allbest.ru

...

Подобные документы

  • Нахождение собственных значений и векторов линейного преобразования, заданных в некотором базисе матрицей. Составление характеристического уравнения и нахождение семейства векторов и их значения при решении, корни характеристического уравнения.

    контрольная работа [44,9 K], добавлен 29.05.2012

  • Приемы построения математических моделей вычислительных систем, отображающих структуру и процессы их функционирования. Число обращений к файлам в процессе решения средней задачи. Определение возможности размещения файлов в накопителях внешней памяти.

    лабораторная работа [32,1 K], добавлен 21.06.2013

  • Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.

    курсовая работа [1,3 M], добавлен 09.11.2013

  • Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.

    реферат [102,8 K], добавлен 05.08.2009

  • Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.

    реферат [35,0 K], добавлен 15.05.2007

  • Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа [69,9 K], добавлен 09.10.2016

  • Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.

    реферат [60,2 K], добавлен 17.06.2014

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа [253,6 K], добавлен 05.01.2015

  • Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.

    творческая работа [481,5 K], добавлен 23.06.2009

  • Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.

    контрольная работа [332,6 K], добавлен 14.12.2012

  • Исследование и подбор матрицы, удовлетворяющей условиям заданного уравнения. Разложение функции по формуле Тейлора в окрестности точки, расчет коэффициентов. Формирование уравнения гиперболы, имеющего заданные координаты фокусов. Расчет корней уравнения.

    контрольная работа [113,2 K], добавлен 16.04.2016

  • Понятие нечеткого множества и свойства его элементов. Определение логических операций: отрицания, конъюнкции, дизъюнкции. Основные этапы нечеткого вывода, метод центра тяжести. Оценка состояния повреждения объекта на основе теории нечетких множеств.

    курсовая работа [316,8 K], добавлен 22.07.2011

  • Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.

    контрольная работа [59,1 K], добавлен 15.01.2014

  • Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.

    контрольная работа [239,4 K], добавлен 19.06.2009

  • Понятие и типы математических моделей, критерии их классификации. Примеры использования дифференциальных уравнений при моделировании реальных процессов: рекламная компания, истечение жидкости, водяные часы, невесомость, прогиб балок, кривая погони.

    курсовая работа [410,0 K], добавлен 27.04.2014

  • Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.

    презентация [98,6 K], добавлен 21.09.2013

  • Основные определения геометрических векторов. Понятие коллинеарных и равных векторов. Простейшие операции над векторами, их проекция на ось. Понятие угла между векторами. Отсчет угла против часовой стрелки, положительная и отрицательная проекция.

    реферат [187,4 K], добавлен 19.08.2009

  • Матричные и векторные вычисления; коллинеарные и компланарные векторы. Определение скалярного произведения векторных величин в трехмерном пространстве. Решение системы линейных уравнений с расширенной матрицей, элементарные преобразования над строками.

    контрольная работа [79,6 K], добавлен 30.12.2010

  • Примеры основных математических моделей, описывающих технические системы. Математическая модель гидроприводов главной лебедки и механизма подъема-опускания самоходного крана. Описание динамики гидропривода механизма поворота стрелы автобетононасоса.

    реферат [3,9 M], добавлен 23.01.2015

  • Анализ математических моделей, линейная система автоматического управления и дифференциальные уравнения, векторно-матричные формы и преобразование структурной схемы. Метод последовательного интегрирования, результаты исследований и единичный импульс.

    курсовая работа [513,2 K], добавлен 08.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.