Вычисление линейных интегральных оценок

Проблема вычисления интеграла линейной интегральной оценки. Уравнение, описывающее свободное движение ошибки регулирования системы. Определение значение параметра, при котором интегральная оценка имеет минимум. Примерный вид кривых изменения ошибки.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 22.07.2015
Размер файла 218,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Лекция 18

Вычисление линейных интегральных оценок

Рассмотрим проблему вычисления интеграла линейной интегральной оценки. Можно сначала решить аналитически дифференциальные уравнения, описывающие систему, долее определить ошибку регулирования, затем подставить выражение для ошибки в интеграл линейной оценки и, взяв его, получить выражение для .

Но можно поступить и иначе.

Пусть свободное движение ошибки регулирования системы описывается уравнением

(1)

Проинтегрируем это уравнение -

После интегрирования получаем -

(2)

Подстановки верхнего предела дают члены следующего вида -

(3)

так как все производные ошибки в установившемся режиме обращаются в ноль.

Подстановки нижнего предела дают члены вида -

(4)

которые являются начальными условиями уравнения (1).

Подставив (3) и (4) в (2), получим

(5)

А так как

,

окончательно получаем

(6)

Решая (6) относительно , получим выражение для вычисления линейной интегральной ошибки -

(7)

Теперь мы может определить по коэффициентам характеристического уравнения системы и начальным условиям переходного процесса ошибки.

Для синтеза систем, определения параметров минимизирующих , следует воспользоваться обычными методами исследования функций на экстремум. Следовательно, если мы хотим определить параметр системы, на пример, параметр , обеспечивающий , необходимо решить относительно параметра следующее уравнение -

.

Рассмотрим несколько примеров использования линейной интегральной оценки.

Пример

Система имеет характеристическое уравнение

(8)

Определим выражение для , если начальные условия имеют вид -

.

Определим значение параметра , при котором интегральная оценка имеет минимум.

Решение

Обозначим -

.

Используем для нахождения выражение (7) -

(9)

Из рассмотрения (9) получаем, что в этом случае не имеет экстремума, а меньшее значение интегральной ошибки мы будем получать при меньшем значении . Действительно, ведь уравнение (8) является характеристическим уравнением апериодического звена, параметр - это постоянная времени. Переходный процесс для двух разных постоянных времени будет иметь вид, показанный на рис. 1.

Рис. 1

Пример

Система имеет характеристическое уравнение

.

Определим выражение для , если начальные условия имеют вид -

.

Определим значение параметра , при котором интегральная оценка имеет минимум.

Решение

Обозначим -

.

Используем для нахождения выражение (7) -

.

Если , то процессы монотонные, обеспечивается при наименьших и . Если , то уменьшение коэффициента затухания уменьшает линейную интегральную оценку, но это приводит к ухудшению переходного процесса, повышению его колебательности.

При колебательных процессах в системах линейная интегральная оценка дает значительную погрешность. При этом минимум оценки может соответствовать процессу с большим числом колебаний со значительной амплитудой, малым быстродействием, так как, по сути, в оценке происходит сложение положительных и отрицательных областей площади под интегральной кривой. Это иллюстрируют рис. 2 и 3, показывая два процесса, которые могут иметь одно и то же значение линейной интегральной оценки.

Рис. 2

Рис. 3

И так как форма переходного процесса при анализе системы автоматического управления часто заранее неизвестна, то применять линейные интегральные оценки на практике нецелесообразно.

Можно попытаться использовать интеграл от модуля ошибки следующего вида -

(10)

На рис. 4 показан примерный вид кривых изменения ошибки и ее модуля. Но аналитическое вычисление интеграла от модуля ошибки по математической модели системы оказалось весьма громоздким, поэтому эта оценка широкого распространения не получила.

интеграл линейный параметр кривая

Рис. 4

Квадратичная интегральная оценка

В большинстве случаев, при возможности возникновения в системе колебательного переходного процесса, используют квадратичную интегральную оценку, которая имеет следующий вид -

(11)

Оценка не зависит от знака отклонений ошибки, а значит и от формы переходного процесса, монотонный, апериодический или колебательный характер он будет иметь. На рис. 5 и 6 показан примерный вид кривых изменения ошибки и квадрата ошибки.

Рис. 5

Рис. 6

Рассмотрим процедуру вычисления квадратичной оценки по математической модели системы. Система управления представляется в виде, показанном на рис. 7.

Рис. 7

Изображение по Лапласу сигнала на выходе системы имеет вид -

(12)

где - изображение по Лапласу единичной ступенчатой функции - входного сигнала системы.

Для системы автоматического управления, математическая модель которой приведена к виду (12), интегральная квадратичная ошибка определяется по следующему выражению -

(13)

Где

(14)

в все элементы с индексами меньше 0 и больше заменяются 0.

Определители в (13), где , получаются заменой в определителе (14) ()-го столбца столбцом следующего вида -

.

Коэффициенты в выражении (13) определяются следующим образом -

(15)

при определении коэффициенты, индексы которых меньше 0 и больше , заменяются 0.

Контрольные вопросы и задачи

Какие параметры математической модели объекта требуются для вычисления линейной интегральной оценки?

Почему нельзя использовать линейную интегральную оценку в случае колебательного характера переходных процессов?

Какие интегральные оценки целесообразно использовать в том случае если в системе возможно наличие колебательных переходных процессов?

Дайте определение квадратичной интегральной оценке переходного процесса.

При минимизации квадратичной оценки, к какому виду стремится переходный процесс?

Какие параметры математической модели объекта требуются для вычисления квадратичной интегральной оценки?

Объект управления описывается передаточной функцией -

.

Вычислите линейную интегральную оценку переходного процесса при начальном значении ошибки .

Ответ:

Линейная интегральная оценка .

Объект управления описывается передаточной функцией -

.

Вычислите линейную интегральную оценку переходного процесса при начальном значении ошибки .

Ответ:

Линейная интегральная оценка .

Размещено на Allbest.ru

...

Подобные документы

  • Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.

    контрольная работа [617,2 K], добавлен 08.07.2011

  • Уравнение с разделяющимися переменными. Однородные и линейные дифференциальные уравнения. Геометрические свойства интегральных кривых. Полный дифференциал функции двух переменных. Определение интеграла методами Бернулли и вариации произвольной постоянной.

    реферат [111,0 K], добавлен 24.08.2015

  • Основные виды линейных интегральных уравнений. Метод последовательных приближений, моментов, наименьших квадратов и коллокации. Решение интегральное уравнение методом конечных сумм и методом моментов. Ненулевые решения однородной линейной системы.

    контрольная работа [288,4 K], добавлен 23.10.2013

  • Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.

    презентация [159,1 K], добавлен 18.09.2013

  • Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.

    презентация [387,8 K], добавлен 25.05.2015

  • Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.

    презентация [316,5 K], добавлен 14.11.2014

  • Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.

    курсовая работа [100,4 K], добавлен 12.05.2009

  • Характеристика интегралов, зависящих от параметра, значение их регулярности. Анализ интеграла коши на кривой и на области. Особенности аналитических свойств интегральных преобразований. Формула Коши: описание, вывод, аналитическая функция, следствия.

    курсовая работа [284,2 K], добавлен 27.03.2011

  • Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.

    презентация [96,6 K], добавлен 18.09.2013

  • Математическая модель линейной непрерывной многосвязной системы. Уравнение движения и общее решение неоднородной системы линейных дифференциальных уравнений. Сигнальный граф системы и структурная схема. Динамики САУ и определение ее характеристик.

    реферат [55,7 K], добавлен 26.01.2009

  • История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа [2,7 M], добавлен 16.10.2013

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа [126,9 K], добавлен 20.04.2016

  • Понятие и назначение определителей, их общая характеристика, методика вычисления и свойства. Алгебра матриц. Системы линейных уравнений и их решение. Векторная алгебра, ее закономерности и принципы. Свойства и приложения векторного произведения.

    контрольная работа [996,2 K], добавлен 04.01.2012

  • Алгоритм вычисления интегральной суммы для функции нескольких переменных по кривой АВ. Определение понятия криволинейного интеграла второго рода. Представление суммы интегралов двух функций вдоль кривой АВ как криволинейного интеграла общего вида.

    презентация [69,4 K], добавлен 17.09.2013

  • Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.

    контрольная работа [298,1 K], добавлен 28.03.2014

  • Алгоритм вычисления интегральной суммы для функции нескольких переменных f(x, y) по плоской кривой АВ. Ознакомление с понятием криволинейного интеграла первого рода. Представление формулы расчета криволинейного интеграла по пространственной кривой.

    презентация [306,9 K], добавлен 17.09.2013

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка [327,4 K], добавлен 01.07.2009

  • Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.

    контрольная работа [97,5 K], добавлен 31.10.2010

  • Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.

    контрольная работа [69,7 K], добавлен 26.02.2012

  • Решение системы линейных уравнений с неизвестными методами Гаусса, Зейделя и простой итерации. Вычисление корня уравнения методами дихотомии, хорды и простой итерации. Нахождение приближённого значения интеграла с точностью до 0,001 методом Симпсона.

    контрольная работа [1,7 M], добавлен 05.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.