Классический метод вариационного исчисления
Задачи об оптимизации объекта управления в динамике. Общая задача Лагранжа, ее значение. Условие стационарности функционала, выраженное уравнениями Эйлера-Лагранжа. Расчет оптимального управления классическим методом вариационного исчисления уравнения.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 22.07.2015 |
Размер файла | 28,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Классический метод вариационного исчисления
Задачи синтеза алгоритмов оптимального управления объектами в динамике при выбранном функционале критерия качества имеют дополнительные (условные) ограничения в виде уравнений математической модели динамики объекта. Экстремум функционала, определяемый при дополнительных условиях (функциональных ограничениях), называют условным экстремумом. Задачи на условный экстремум при определении оптимальных управлений объектом в динамике обусловлены тем, что функции xi(t) и ul(t), входящие в функционал J, не могут варьироваться независимо, так как они связаны уравнением динамики объекта. Траектория выхода у(t) является следствием изменения координаты управления и зависит от вида дифференциального уравнения объекта.
Задача об оптимизации объекта управления в динамике, решаемая классическим вариационным исчислением, имеет следующую формулировку. Задана математическая модель объекта в форме уравнений состояния, представленная при одной координате управления векторным уравнением
.
Требуется определить оптимальное управлением0 (/), обеспечивающее минимум функционала
,
задача лагранж вариационный исчисление
в котором X и u связаны уравнениями состояния , а функция F(...) является непрерывной по всем переменным и имеет непрерывные частные производные первых двух порядков. Функции xi(t) и u(t) должны быть непрерывными и иметь непрерывные первые производные (i = 1, 2, ..., n). Векторы X0 и Хк фиксированы.
Первые задачи на условный экстремум были поставлены и решены основоположниками классического вариационного исчисления Бернулли, Эйлером и Лагранжем. Задачу, определяемую дифференциальными связями типа и функционалом, называют общей задачей Лагранжа. Если функционал характеризует конечное состояние J = G[X(tк), u(tк), tк], то имеем задачу Майера, а если
задачу Больца. Для решения общей задачи Лагранжа используют метод множителей Лагранжа.
При решении задачи на условный экстремум рассматривают вспомогательный функционал
,
где т = [1, 2,..., n] - строка множителей Лагранжа;
.
Функцию называют функцией Лагранжа, а функцию - функцией связей, которая определяется исходными уравнениями:
,
Задачу на безусловный экстремум решают для вспомогательного функционала. Уравнения Эйлера при этом составляют для функции Лагранжа (i = 1, 2, ..., n):
Эти уравнения называют уравнениями Эйлера - Лагранжа; они характеризуют условие стационарности функционала. В результате решения уравнений с учетом уравнений получим оптимальное управление u0(t) объектом в динамике.
Уравнения и являются уравнениями вариационной задачи, порядок которых после исключения координаты управления равен 2n. При решении этих уравнений относительно векторов X и для заданных X(t0) и X(tк) рассматривается двухточечная краевая задача. Сложность решения ее обусловлена тем, что начальные значения множителей Лагранжа i(t0) неизвестны. Чтобы удовлетворить заданным значениям векторов состояния X(t0) и X(tк), приходится многократно решать уравнения вариационной задачи, задаваясь различными начальными значениями i(t0).
При определении оптимального управления классическим методом вариационного исчисления уравнения вариационной задачи могут быть записаны в гамильтоновой или канонической форме. Пусть функционал в частном случае зависит от переменных х1(t) и х2(t), а также их производных и :
.
Запишем для него уравнения Эйлера типа :
От переменных х1 и х2 перейдем к новым переменным р1 и р2 согласно выражениям
,
а от функции F - к новой функции
,
В общем случае, при n переменных выражение для функции Н запишем в векторной форме:
,
где функцию Н называют функцией Гамильтона, а переменные pi - каноническими переменными.
Дифференцируя , получаем
.
На основании уравнений Эйлера и запишем
,
При этом вместо получим новую систему дифференциальных уравнений, которые называют каноническими уравнениями Гамильтона:
Размещено на Allbest.ru
...Подобные документы
Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.
курсовая работа [1,2 M], добавлен 16.01.2013Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа [1,3 M], добавлен 08.04.2015Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.
контрольная работа [170,3 K], добавлен 01.04.2010Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.
контрольная работа [51,5 K], добавлен 05.01.2016Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.
практическая работа [46,1 K], добавлен 06.06.2011Синтез вариационного исчисления и метода функций Ляпунова в основе принципа динамического программирования. Метод знакопостоянных функций Ляпунова в решении задач о стабилизации и синтезе управления для нелинейной и автономной управляемых систем.
курсовая работа [1,2 M], добавлен 17.06.2011Наличие некоторого динамического объекта, т.е. объекта, меняющегося во времени, характерного для задачи управления. Линейная задача быстродействия. Свойства экспоненциала матрицы. Линейные дифференциальные уравнения с управлением, пример интегрирования.
контрольная работа [547,7 K], добавлен 13.03.2015Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.
задача [226,9 K], добавлен 21.06.2009Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа [147,4 K], добавлен 16.11.2015Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.
контрольная работа [177,1 K], добавлен 13.06.2012Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа [1,8 M], добавлен 27.11.2012Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат [726,8 K], добавлен 14.03.2013Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа и их доказательство. Локальные экстремумы функции, исследование ее на выпуклость и вогнутость, понятие точки перегиба. Асимптоты и общая схема построения графика функции.
реферат [430,7 K], добавлен 12.06.2010Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.
дипломная работа [1,1 M], добавлен 29.06.2012Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.
презентация [251,7 K], добавлен 29.10.2013Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.
курсовая работа [4,8 M], добавлен 23.05.2013Особенности выполнения задачи минимизации функционала. Свойства билинейной формы. Формулирование обобщенного способа решения вариационной задачи для краевых задач с самосопряженным дифференциальным оператором (вследствие квадратичности функционала).
презентация [79,5 K], добавлен 30.10.2013Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.
курсовая работа [398,2 K], добавлен 13.07.2010Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа [1003,8 K], добавлен 29.11.2014