Правила эквивалентных преобразований структурных схем систем автоматического управления

Рассмотрение структуры типичной системы автоматического управления. Исследование основных правил эквивалентных преобразований. Нахождение необходимой передаточной функции. Применение принципа суперпозиции (наложения). Свертывание структурной схемы.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 23.07.2015
Размер файла 278,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Правила эквивалентных преобразований структурных схем систем автоматического управления

Выше были рассмотрены математические модели отдельных динамических звеньев. САУ представляет собой систему, состоящую из функциональных элементов, каждый из которых может быть представлен в виде динамического звена. То есть САУ можно представить в виде совокупности динамических звеньев с известными математическими моделями. Рассмотрим структуру типичной САУ -

где - передаточные функции соответственно объекта, датчика и регулятора, - изображения задающего, возмущающего и выходного сигналов.

В процессе анализа и синтеза САУ необходимо получать передаточные функции САУ, которые связывают выходную переменную с заданием и возмущением в САУ, по известным структурной схеме и передаточным функциям динамических звеньев, входящих в состав САУ.

Аналогичная задача возникает в том случае, когда известны частотные характеристики динамических звеньев, а необходимо определить частотные характеристики САУ, характеризующие связи между выходом и входом САУ.

Решением этих задач мы и займемся в дальнейшем.

Эта задача решается путем преобразования (сворачивания) структурной схемы к одному динамическому звену с искомой передаточной функцией на основе использования правил эквивалентных преобразований структурных схем и принципа суперпозиции (наложения).

Правила эквивалентных преобразований позволяют найти необходимую передаточную функцию САУ, свернув структурную схему к одному динамическому звену с искомой передаточной функцией.

Рассмотрим правила эквивалентных преобразований, не изменяющих свойств систем и необходимых для нахождения передаточной функции:

1. Последовательное соединение динамических звеньев.

2. Параллельное соединение динамических звеньев.

3. Замкнутый контур с отрицательной обратной связью.

4. Замкнутый контур с положительной обратной связью.

5. Перенос точки ветвления через динамическое звено.

6. Перенос суммирующего звена через динамическое звено.

7. Перестановка суммирующих звеньев.

8. Перенос точки ветвления с выхода на вход суммирующего звена.

9. Перенос точки ветвления с входа на выход суммирующего звена.

Принцип суперпозиции (наложения)

Применим рассмотренные правила для упрощения структурной схемы

Рис. 1

автоматический управление передаточный суперпозиция

Процесс преобразования, который часто называют свертыванием структурной схемы, выглядит следующим образом.

1. Перенесем суммирующее звено через динамическое звено .

2. Поменяем местами суммирующие звенья и.

3. Преобразуем последовательно включенные динамические звенья и .

4. Преобразуем замкнутый контур с отрицательной обратной связью ().

5. Перенесем суммирующее звено вправо.

6. Преобразуем последовательно включенные звенья.

В соответствии с полученной структурной схемой запишем операторное уравнение -

(1)

Уравнение показывает, что является линейной комбинацией изображений входных сигналов, взятых с коэффициентами и . Выясним смысл этих коэффициентов на примере коэффициента . Для этого положим в (1) , тогда получим -

(2)

Таким образом, из (2) следует, - это передаточная функция динамического звена, к которому свернута структурная схема в предположении, что изображения всех входных сигналов, кроме , равны нулю.

Теперь становится ясным смысл и самого операторного уравнения (1), описывающего систему. Он заключается в том, что реакция линейной системы на совместно действующие входные сигналы может быть определена в виде суммы частичных реакций, каждая из которых вычисляется в предположении, что на систему действует только один входной сигнал, а остальные равны нулю.

По сути - это формулировка фундаментального принципа, который называют принципом наложения или суперпозиции. Этот принцип можно рассматривать как дополнение к правилам эквивалентных преобразований структурных схем и активно использовать на практике.

Практически принцип суперпозиции для нахождения конкретной передаточной функции используют следующим образом. Полагают равными нулю все входные сигналы, кроме необходимого сигнала, а затем выполняют преобразование структурной схемы в одно динамическое звено.

Рассмотрим использование принципа суперпозиции на примере показанной на рис. 1 структурной схемы.

1. Полагаем и изобразим соответствующую этому случаю структурную схему.

Используя эквивалентные преобразования, получим -

.

2. Полагаем и изобразим соответствующую этому случаю структурную схему.

Используя эквивалентные преобразования, получим -

.

3. Имея , в соответствии с принципом суперпозиции получим "свернутую" структурную схему САУ.

Контрольные вопросы и задачи

1. Какие задачи позволяют решать правила эквивалентных преобразований структурных схем?

2. Дайте определение принципа суперпозиции применительно к структурным схемам систем автоматического управления.

3. Как используют принцип суперпозиции на практике?

4. Определите передаточные функции

по следующей структурной схеме

Ответ:

.

5. Определите передаточную функцию, эквивалентную структурной схеме.

Ответ:

.

6. Определите передаточные функции

по следующей структурной схеме

Ответ:

.

7. Определите передаточные функции

по следующей структурной схеме

Ответ:

Размещено на Allbest.ru

...

Подобные документы

  • Нахождение АЧХ, ФЧХ, ЛАЧХ для заданных параметров. Построение ЛФЧХ. Определение параметров передаточной функции разомкнутой системы. Исследование на устойчивость по критериям: Гурвица, Михайлова и Найквиста. Определение точности структурной схемы.

    курсовая работа [957,8 K], добавлен 11.12.2012

  • Разработка и анализ топологической модели электронной схемы для полного диапазона частот. Определение передаточной схемной функции методом эквивалентных схем в матричной форме, а также методом сигнальных графов, используя сигнальный граф Мэзона.

    контрольная работа [469,9 K], добавлен 11.04.2016

  • Использование эквивалентных преобразований. Понятие основных замкнутых классов. Метод минимизирующих карт и метод Петрика. Операция неполного попарного склеивания. Полином Жегалкина и коэффициенты второй степени. Таблицы значений булевых функций.

    контрольная работа [90,4 K], добавлен 06.06.2011

  • Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.

    курсовая работа [462,5 K], добавлен 20.10.2013

  • Передаточные функции - центральное понятие классической теории автоматического управления. Они основаны на использовании преобразования Лапласа всех процессов как функций времени. Определение передаточной функции. Статические и астатические системы.

    реферат [74,0 K], добавлен 30.11.2008

  • Анализ математических моделей, линейная система автоматического управления и дифференциальные уравнения, векторно-матричные формы и преобразование структурной схемы. Метод последовательного интегрирования, результаты исследований и единичный импульс.

    курсовая работа [513,2 K], добавлен 08.10.2011

  • Методика преобразования вращения и ее значение в решении алгебраических систем уравнений. Получение результирующей матрицы. Ортогональные преобразования отражением. Итерационные методы с минимизацией невязки. Решение методом сопряженных направлений.

    реферат [116,3 K], добавлен 14.08.2009

  • Определение и порядок расчета для многомерной системы трех имеющихся матриц: передаточной и частотной передаточной функции, годографа, импульсной и переходной характеристики. Порядок составления структурной схемы полученной системы матриц А, В и С.

    контрольная работа [206,5 K], добавлен 13.09.2010

  • От анализа Фурье к вейвлет-анализу. Некоторые примеры функций вейвлет-анализа в MATLAB. Построение систем полуортогональных сплайновых вейвлет. Применение вейвлет-преобразований для решения интегральных уравнений. Вейвлеты пакета wavelet toolbox.

    дипломная работа [1,5 M], добавлен 12.04.2014

  • Нахождение области определения, области значений функции, построение ее графиков с помощью преобразований кривых. График линейной функции с областью значений - все положительные действительные числа. Исследование функции на непрерывность. Расчет предела.

    контрольная работа [922,4 K], добавлен 13.12.2012

  • Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.

    курсовая работа [398,2 K], добавлен 13.07.2010

  • Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.

    курсовая работа [261,6 K], добавлен 05.09.2009

  • Ознакомление с принципами параллельного переноса, растяжения и сжатия функции y=f(x) вдоль осей Ох и Оу. Рассмотрение правил симметрического отображения функции относительно осей координат. Особенности сложения и умножения ординат точек графиков.

    презентация [356,6 K], добавлен 16.12.2011

  • Определение связи между выходом и входом для непрерывных систем. Вычисление передаточной функции и основы структурного метода дискретной системы. Расчет передаточной функции дискретной системы с обратной связью. Передаточные функции цифровых алгоритмов.

    реферат [67,2 K], добавлен 19.08.2009

  • Описание системы трехмерного визуализатора процесса дефрагментации с точки зрения системного анализа. Исследование преобразований состояний кубика Рубика с помощью математической теории групп. Анализ алгоритмов Тистлетуэйта и Коцембы решения головоломки.

    курсовая работа [803,2 K], добавлен 26.11.2015

  • Построение дифференциальных систем, эквивалентных в смысле совпадения отражающих функций, системам с известным первым интегралом. Отображение Пуанкаре, общие сведения об отражающих функциях. Возмущения дифференциальных систем, стационарный интеграл.

    дипломная работа [502,7 K], добавлен 21.08.2009

  • Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.

    курсовая работа [6,4 M], добавлен 13.08.2011

  • Теория автоматического управления и виды алгоритмических звеньев. Стационарные и нестационарные САР. Типовые динамические звенья: определение и классификация. Запас устойчивости по модулю и фазе. Показатель колебательности и кривая переходного процесса.

    контрольная работа [477,5 K], добавлен 15.07.2014

  • Операторы преобразования переменных, классы, способы построения и особенности структурных моделей систем управления. Линейные и нелинейные модели и характеристики систем управления, модели вход-выход, построение их временных и частотных характеристик.

    учебное пособие [509,3 K], добавлен 23.12.2009

  • Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.

    курсовая работа [260,2 K], добавлен 10.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.