Преобразование функций
Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 23.07.2015 |
Размер файла | 208,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Преобразование функций
1. Преобразование Фурье
Соотношение
называют прямым преобразованием Фурье. Функция угловой частоты - называется Фурье-изображением или частотным спектром функции . Спектр характеризует соотношение амплитуд и фаз бесконечного множества бесконечно малых синусоидальных компонент, составляющих в сумме непериодический сигнал . Операция преобразования Фурье математически записывается следующим образом:
где - символ прямого преобразования Фурье.
Спектры в теории автоматического управления представляют графически, изображая отдельно их действительную и мнимую части:
На рис. 1 представлено типичное изображение спектра непериодического сигнала.
Рис. 1
Отметим следующие особенности спектра непериодической функции :
1. Спектр непериодической функции времени непрерывен;
2. Область допустимых значений аргумента спектра
3. Действительная часть спектра - четная функция частоты, мнимая часть спектра - нечетная функция, что позволяет использовать одну половину спектра
Преобразование Фурье обратимо, то есть, зная Фурье-изображение, можно определить исходную функцию - оригинал. Соотношение обратного преобразования Фурье имеет следующий вид:
или в сокращенной записи , где - символ обратного преобразования Фурье.
Заметим, что временная функция имеет преобразование Фурье тогда и только тогда, когда:
· функция однозначна, содержит конечное число максимумов, минимумов и разрывов;
· функция абсолютно интегрируема, то есть
Обратное преобразование Фурье возможно только в том случае, если все полюсы - левые.
Рассмотрим примеры определения спектра временных функций.
Пример:
Найдем частотный спектр дельта-функции.
,
так как при
,
а при и
.
В итоге, имеет единичный, равномерный и не зависящий от частоты действительный спектр, а мнимая часть спектра будет равна нулю (см. рис. 2).
Рис. 2
Пример:
Найдем частотный спектр единичной ступенчатой функции.
Для этой функции не выполняется требование абсолютной интегрируемости, так как
Поэтому Фурье-изображения не имеет.
2. Преобразование Лапласа
Соотношение
называют прямым преобразованием Лапласа. Комплексная переменная называется оператором Лапласа, где - угловая частота, - некоторое положительное постоянное число. Функция комплексной переменной называется изображением сигнала по Лапласу. Операция определения изображения по оригиналу сокращенно записывается - , где - символ прямого преобразования Лапласа.
Преобразование Лапласа обратимо, то есть, зная изображение по Лапласу, можно определить оригинал, используя соотношение обратного преобразования
или , где - символ обратного преобразования Лапласа.
Отметим, что преобразование Лапласа изображает исходную функцию лишь при , а поведение исходной функции при никак не сказывается на изображении. Класс функций, преобразуемых по Лапласу, значительно шире класса функций, преобразуемых по Фурье. Практически любые функции времени в ТАУ имеют преобразование Лапласа.
Получим изображения по Лапласу для импульсных функций.
,
преобразование фурье функция лаплас
так как при ,
, и при .
.
На практике для выполнения прямого и обратного преобразований Лапласа используются таблицы преобразований, фрагмент которой показан в табл. 1.
Таблица 1.
1 |
Таблицы преобразования Лапласа могут быть использованы для определения Фурье-изображений таких абсолютно интегрируемых функций, которые равны 0 при . Для получения Фурье-изображений в этом случае достаточно положить в изображении по Лапласу . В общем виде это выглядит как
,
если при и
Рассмотрим формулировки основных теорем преобразования Лапласа, которые широко используются в ТАУ.
1. Теорема линейности. Любое линейное соотношение между функциями времени справедливо и для изображений по Лапласу этих функций;
;
2. Теорема о дифференцировании оригинала.
Если и , то ,
где - начальное значение оригинала.
Для второй производной используют выражение
.
Для производной -го порядка справедливо следующее соотношение:
;
Для производной -го порядка при нулевых начальных условиях справедливо следующее соотношение:
;
то есть дифференцирование степени оригинала по времени при нулевых начальных условиях соответствует умножению изображения на .
3. Теорема об интегрировании оригинала.
;
Замечание
В области изображений по Лапласу сложные операции дифференцирования и интегрирования сводятся к операциям умножения и деления на , что позволяет переходить от дифференциальных и интегральных уравнений к алгебраическим. Это является главным достоинством преобразования Лапласа как математического аппарата теории автоматического управления.
1. Теорема запаздывания. Для любого справедливо соотношение
;
2. Теорема о свертке (умножении изображений).
,
Где
;
3. Теорема о предельных значениях. Если , то
если существует.
Для нахождения оригинала функции по ее изображению используют обратное преобразование Лапласа. Функцию изображения необходимо представить в форме Хэвисайта, воспользовавшись необходимой формулой разложения дробно-рациональной функции. Полученную сумму простейших дробей подвергают обратному преобразованию Лапласа. Для этого можно воспользоваться таблицами преобразования Лапласа, которые определяют изображения многих временных функций. Фрагмент таблицы преобразования Лапласа приведен в табл. 1. В тех случаях, когда имеются комплексно-сопряженные полюсы изображения, необходимо преобразовать соответствующие простейшие дроби к виду, удобному для использования таблицы преобразования Лапласа. Существенно облегчает преобразование использование персонального компьютера с пакетами математических программ, содержащих функции прямого и обратного преобразований Лапласа.
Пример
Определим оригинал по изображению в виде дробно-рациональной функции
.
Используем разложение Хэвисайта для дробно-рациональной функции с одним нулевым полюсом. Тогда
.
Коэффициенты разложения имеют вид
.
Изображение в форме Хэвисайта имеет вид
.
Используем теорему о линейности и таблицу преобразований к каждому слагаемому, в результате получаем
.
График функции оригинала имеет вид, показанный на рис. 3.
Рис. 3
Кратко поясним алгоритм решения дифференциальных уравнений операторным методом на примере решения дифференциального уравнения 2 порядка в общем виде
,
где , , .
Применим теорему о дифференцировании для нахождения изображений производных
, .
Пусть , тогда
.
Получим операторное уравнение, используя теорему линейности
,
.
Решаем уравнение относительно ,
.
Найдем , используя переход к форме Хэвисайта (разложение Хэвисайта)
,
где , .
Особо следует обратить внимание на получение изображения производной ступенчатой единичной функции , которая определяется следующим образом:
Если использовать
,
то получается ошибочное решение, поэтому следует использовать называемые "левые" начальные условия
.
Справедливость этого можно легко проверить подстановкой решения в исходное дифференциальное уравнение.
Контрольные вопросы и задачи
1. Какие ограничения накладываются на прямое и обратное преобразование Фурье?
2. Как с помощью таблиц преобразования Лапласа получить частотный спектр реального сигнала - непериодической функции времени?
3. Если изображение по Лапласу имеет вид дробно-рациональной функции, в какой форме ее удобнее представлять для получения оригинала, в форме Боде или в форме Хэвисайта?
4. Определите оригинал следующего изображения по Лапласу
.
Ответ:
.
5. Определите оригинал следующего изображения по Лапласу
.
Ответ:
.
6. Найдите , решив дифференциальное уравнение
,
где .
Ответ:
.
7. Найдите , решив дифференциальное уравнение
,
где .
Ответ:
.
Размещено на Allbest.ru
...Подобные документы
Векторные пространства, скалярное произведение и норма функций, ортогональные системы функций, равенства и тригонометрический ряд Фурье. Сходимость интеграла Фурье, основные сведения теории преобразования. Операционное исчисление, преобразование Лапласа.
учебное пособие [1,2 M], добавлен 23.12.2009Алгоритм вычисления преобразования Фурье для дискретного случая. Дискретное преобразование Фурье. Спектральное представление и спектральные характеристики периодического сигнала, четной непериодической функции и произвольного непериодического сигнала.
курсовая работа [932,9 K], добавлен 23.01.2022Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.
реферат [674,0 K], добавлен 26.11.2010Образование множеством функций системы ортонормированных функций, условия ортогональности для заданной системы. Разложение в тригонометрический и комплексный ряды Фурье пилообразного сигнала. Генерирование программного произвольного дискретного сигнала.
контрольная работа [378,6 K], добавлен 14.01.2016Элементарные многоэкстремальные функции, направления их исследования и вычисление основных параметров. Сравнительный анализ ЭМЭФ-преобразования и преобразования Фурье. Механизм и значение обнаружения слабого сигнала на фоне сильной низкочастотной помехи.
статья [126,0 K], добавлен 03.07.2014Пространство обобщенных функций. Дифференциальные уравнения в обобщенных функциях. Преобразования Лапласа и Фурье. Обобщенные функции, отвечающие квадратичным формам с комплексными коэффициентами. Нахождение решения в математическом пакете Maple.
курсовая работа [516,1 K], добавлен 25.06.2013Основные правила преобразования графиков на примерах элементарных функций: преобразование симметрии, параллельный перенос, сжатие и растяжение. Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций.
презентация [2,4 M], добавлен 16.11.2010Свойства дискретного преобразования Фурье, представленные в виде математических формул, которые наиболее адекватно соответствуют цифровой технике обработки информации. Алгоритм быстрого преобразования Фурье (БПФ), его значение для программирования.
учебное пособие [223,6 K], добавлен 11.02.2014Преобразования Фурье, представление периодической функции суммой отдельных гармонических составляющих. Использование преобразований как для непрерывных функций времени, так и для дискретных. Программа и примеры реализации алгоритмов с прореживанием.
реферат [1,6 M], добавлен 25.05.2010Плоскость частота-время для анализа и сравнения частотно-временных локализационных свойств различных базисов. Понятие базисных функций. Прямое и обратное преобразование Фурье. Сущность дискретного вейвлет-преобразования и примеры функции вейвлет.
курсовая работа [486,0 K], добавлен 21.11.2010Общее определение коэффициентов по методу Эйлера-Фурье. Ортогональные системы функций. Интеграл Дирихле, принцип локализации. Случай непериодической функции, произвольного промежутка, четных и нечетных функций. Примеры разложения функций в ряд Фурье.
курсовая работа [296,3 K], добавлен 12.12.2010Изучение булевых функций. Алгоритм представления булевых функций в виде полинома Жегалкина. Система функций множества. Алгебраические преобразования, метод неопределенных коэффициентов. Таблица истинности для определенного количества переменных.
курсовая работа [701,9 K], добавлен 27.04.2011Общая характеристика математической модели радиотехнического сигнала. Значение спектрального разложения функций в радиотехнике. Работа вещественных одномерных детерминированных сигналов и система синусоидальных и косинусоидальных гармонических функций.
курсовая работа [1,0 M], добавлен 13.08.2011Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.
контрольная работа [157,0 K], добавлен 11.03.2015Введение новых динамических систем и их решений, специальных функций эллиптических и тета-функций, зависящих от одного параметра, разложение эллиптических функций Якоби в ряды Фурье (теоремы разложения). Рассмотрение их связи с функцией Вейерштрасса.
курсовая работа [1,9 M], добавлен 26.04.2011Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.
презентация [73,1 K], добавлен 18.09.2013Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).
презентация [30,4 K], добавлен 18.09.2013Интеграл Фурье в комплексной форме. Формулировка теоремы о сходимости интеграла для кусочно-гладких и абсолютно интегрируемых на числовой прямой функции. Примеры нахождения преобразования Фурье, сверстка и преобразование, спектр, некоторые приложения.
курсовая работа [231,5 K], добавлен 27.08.2012Обзор таблицы производных элементарных функций. Понятие промежуточного аргумента. Правила дифференцирования сложных функций. Способ изображения траектории точки в виде изменения ее проекций по осям. Дифференцирование параметрически заданной функции.
контрольная работа [238,1 K], добавлен 11.08.2009Математический анализ и операционное исчисление. Обращение преобразования с помощью многочленов, ортогональных на промежутке. Интегральное преобразования Лапласа с помощью смещенных многочленов Лежандра и многочленов Чебышева первого рода.
реферат [503,6 K], добавлен 10.02.2011