Случайные величины

Разработка и рассмотрение закона распределения дискретной случайной величины. Определение математического ожидания, дисперсии и среднеквадратического отклонения случайной величины. Исследование и характеристика процесса построения графика функций.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 02.09.2015
Размер файла 88,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «Уральский государственный экономический университет»

Центр дистанционного образования

Контрольная работа

По дисциплине: «Теория вероятности»

По теме: «Случайные величины»

Исполнитель: студент(ка)

Групп УК-14Пр

Сургина Е.А.

Направление: Управление качеством

Первоуральск 2015

Задание 1

Составить закон распределения дискретной случайной величины , вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Нужные сборщику детали находятся в трёх из пяти ящиков. Сборщик вскрывает ящики до тех пор, пока не найдёт нужные детали. Составить закон распределения случайной величины Х - числа вскрытых ящиков. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Решение.

Поскольку всего 2 ящика не содержат нужных деталей, то случайная величина Х - число вскрытых ящиков - может принять значения 1, 2 или 3. Найдём вероятности этих значений по классическому определению вероятности:

- вероятность того, что первый ящик окажется с нужными деталями; дискретный математический среднеквадратический

- вероятность того, что первый ящик окажется с ненужными деталями, а второй - с нужными;

- вероятность того, что первый и второй ящики окажутся с ненужными деталями, а третий - с нужными.

Составим закон распределения случайной величины :

хi

1

2

3

рi

0,6

0,3

0,1

Выполним проверку.

Поскольку ряд распределения содержит все возможные значения случайной величины, то суммарная вероятность должна быть равна 1:

(верно).

Найдём числовые характеристики дискретной случайной величины Х.

Математическое ожидание:

.

Дисперсия:

Среднее квадратическое отклонение:

.

Ответ:

Задание 2

Случайная величина задана функцией распределения . Найти плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал . Построить графики функций и .

(-1; 1).

Решение.

Плотность распределения связана с функцией распределения формулой . Найдём плотность распределения случайной величины :

.

Вычислим математическое ожидание случайной величины :

Вычислим дисперсию случайной величины :

Вычислим заданную вероятность:

.

Построим графики функций и . Для этого вычислим значения этих функций в нескольких точках на интервале :

0

0,5

1

1,5

2

0

0,0625

0,5

0,5625

1

0

?

?

?

1

Размещено на Allbest.ru

...

Подобные документы

  • Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.

    контрольная работа [97,1 K], добавлен 26.02.2012

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа [344,8 K], добавлен 31.10.2013

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа [38,5 K], добавлен 25.03.2015

  • Случайные величины. Функция и плотность распределения вероятностей дискретной случайной величины. Сингулярные случайные величины. Математическое ожидание случайной величины. Неравенство Чебышева. Моменты, кумулянты и характеристическая функция.

    реферат [244,6 K], добавлен 03.12.2007

  • Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.

    контрольная работа [33,8 K], добавлен 13.12.2010

  • Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.

    контрольная работа [104,7 K], добавлен 24.01.2013

  • Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.

    контрольная работа [328,2 K], добавлен 07.12.2013

  • Определение вероятности определенного события. Вычисление математического ожидания, дисперсии, среднеквадратического отклонения дискретной случайной величины Х по известному закону ее распределения, заданному таблично. Расчет корреляционных признаков.

    контрольная работа [725,5 K], добавлен 12.02.2010

  • Построение доверительных интервалов для математического ожидания и дисперсии, соответствующие вероятности. Исследование статистических характеристик случайной величины на основе выбора объема. Теоретическая и эмпирическая плотность распределения.

    курсовая работа [594,4 K], добавлен 02.01.2012

  • Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.

    реферат [174,7 K], добавлен 25.10.2015

  • Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.

    контрольная работа [162,6 K], добавлен 28.05.2012

  • Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.

    контрольная работа [87,2 K], добавлен 29.01.2014

  • Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.

    контрольная работа [91,7 K], добавлен 15.11.2011

  • Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция [285,3 K], добавлен 17.12.2010

  • Непрерывная случайная величина и функция распределения. Математическое ожидание непрерывной случайной величины. Среднее квадратичное отклонение. Кривая распределения для непрерывной случайной величины. Понятие однофакторного дисперсионного анализа.

    контрольная работа [165,5 K], добавлен 03.01.2012

  • Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.

    контрольная работа [390,7 K], добавлен 29.05.2014

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа [57,3 K], добавлен 07.09.2010

  • Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.

    курсовая работа [29,7 K], добавлен 31.05.2010

  • Особенности функции распределения как самой универсальной характеристики случайной величины. Описание ее свойств, их представление с помощью геометрической интерпретации. Закономерности вычисления вероятности распределения дискретной случайной величины.

    презентация [69,1 K], добавлен 01.11.2013

  • Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.

    контрольная работа [77,6 K], добавлен 20.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.