Численные методы решения нелинейных уравнений. Комбинированный метод

Комбинированный метод как метод уточнения корней нелинейных алгебраических или трансцендентных уравнений. Нахождение интервала с существующим единственным корнем. Сохранение знаков на исследуемом отрезке. Сокращение интервалов путём половинного деления.

Рубрика Математика
Вид отчет по практике
Язык русский
Дата добавления 14.10.2015
Размер файла 64,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки российской федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнёва»

Институт информатики и телекоммуникаций

Кафедра прикладной математики

Отчет по учебной практике

Численные методы решения нелинейных уравнений. Комбинированный метод

Выполнили:

студенты гр. БПМ 14-01

Новикова Галина

Матюшкин Иван

Проверил преподаватель:

Лыткина Лидия Ивановна

Красноярск 2015

Введение

Комбинированный метод.

Комбинированный метод - метод уточнения корней нелинейных (алгебраических или трансцендентных) уравнений. Представляет собой одновременное использование метода хорд и метода Ньютона (метода касательных). За счёт того что интервал в котором находиться корень сокращается одновременно с двух сторон, метод является достаточно эффективным.

Для того чтобы научиться применять комбинированный метод необходимо уметь:

- отделять корни (находить интервалы в которых существует единственный корень);

- пользоваться методом хорд;

- пользоваться методом касательных.

Рис. Графическое изображение применения комбинированного метода

Теоретическая часть.

Пусть дана некоторая функция f(x)=0 и найден некоторый интервал [a,b], в котором существует только один из корней уравнения. ( f(a)f(b)<0; )

f'(x) и f"(x) сохраняют знак на исследуемом отрезке. Если на интервале знаки изменяются, нужно сократить интервал путём половинного деления. Для удобства предположим что найденный интервал удовлетворяет следующим условиям: f'(x)>0, f"(x)>0, x ?[a,b].

Используя метод хорд и метод Ньютона находим одновременно значения по недостатку и по избытку корня о, применяя формулы:

; (1)

; (2)

За мы выбираем отрицательную границу интервала, за - положительную.

После применения формул интервал сократится с обеих сторон и будет иметь вид [ ].

Таким образом, сокращаем до тех пор, пока не достигнем необходимой точности е. Проверить это можно по формуле: е.

В итоге за приблизительное значение корня можно взять:

Практическая часть.

В качестве примера рассмотрим уравнение f(x) и найдём приближенное значение одного из его корней.

Найдём интервал внутри которого есть корень:

- ?

0

2

+ ?

-

-

+

+

[0;2] - найденный интервал.

Половинным делением сократим интервал:

f(1)=-0.6; => [1;2]

Примем за , за = 2. Тогда применяя формулы (1) и (2) получим:

n

1

2

3

4

1,096774194

1,175195407

1,198698185

1,19999652

1,490909091

1,257385884

1,202864935

1,200007639

Уже при первых 4 шагах видно, что корень уравнения в этом интервале ~1,2.

Подставим это значение в уравнение и убедимся:

Этот результат демонстрирует эффективность комбинированного метода.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности решения алгебраических, нелинейных, трансцендентных уравнений. Метод половинного деления (дихотомия). Метод касательных (Ньютона), метод секущих. Численные методы вычисления определённых интегралов. Решение различными методами прямоугольников.

    курсовая работа [473,4 K], добавлен 15.02.2010

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

  • Общая постановка задачи. Отделение корня. Уточнение корня. Метод половинного деления (бисекции). Метод хорд (секущих). Метод касательных (Ньютона). Комбинированный метод хорд и касательных. Задания для расчётных работ.

    творческая работа [157,4 K], добавлен 18.07.2007

  • Изучение методов уточнения корней нелинейных уравнений (половинного деления, хорд, касательных, простой итерации). Метод хорд и касательных дает высокую скорость сходимости при решении уравнений, и небольшую - метод половинного деления и простой итерации.

    контрольная работа [58,6 K], добавлен 20.11.2010

  • Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.

    курсовая работа [371,6 K], добавлен 14.01.2015

  • Изучение численных методов приближенного решения нелинейных систем уравнений. Составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке Фортран - IV. Приобретение практических навыков отладки и решения задач с помощью ЭВМ.

    методичка [150,8 K], добавлен 27.11.2009

  • Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

    лабораторная работа [151,3 K], добавлен 15.07.2009

  • Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.

    курсовая работа [911,6 K], добавлен 15.08.2012

  • Модифицированный метод Ньютона. Общие замечания о сходимости процесса. Метод простой итерации. Приближенное решение систем нелинейных уравнений различными методами. Быстрота сходимости процесса. Существование корней системы и сходимость процесса Ньютона.

    дипломная работа [1,8 M], добавлен 14.09.2015

  • Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.

    реферат [1,6 M], добавлен 29.05.2009

  • Трансцендентное уравнение: понятие и характеристика. Метод половинного деления (дихотомии), его сущность. Применение метода простой итерации для решения уравнения. Геометрический смысл метода Ньютона. Уравнение хорды и касательной, проходящей через точку.

    курсовая работа [515,8 K], добавлен 28.06.2013

  • Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное (численное) решение математических задач. Два вида погрешностей, возникающих при решении задач. Нахождение нулей функции. Метод половинного деления. Метод хорд.

    курс лекций [81,2 K], добавлен 06.03.2009

  • Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.

    курсовая работа [3,1 M], добавлен 26.02.2011

  • Анализ методов решения систем нелинейных уравнений. Простая итерация, преобразование Эйткена, метод Ньютона и его модификации, квазиньютоновские и другие итерационные методы решения. Реализация итерационных методов с помощью математического пакета Maple.

    курсовая работа [820,5 K], добавлен 22.08.2010

  • Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.

    курсовая работа [59,8 K], добавлен 27.03.2011

  • Итерационные методы (методы последовательных приближений) для решения уравнений. Одношаговые итерационные формулы. Метод последовательных приближений Пикара. Возникновение хаоса в детерминированных системах. Методы решения систем алгебраических уравнений.

    контрольная работа [166,2 K], добавлен 04.09.2010

  • Структура и принципы решения линейных уравнений. Метод Крамера и Гаусса, Ньютона, половинного деления, секущих. Отличительные особенности и условия применения графического метода. Содержание теоремы Штурма. Принципы и основные этапы поиска интервалов.

    реферат [948,7 K], добавлен 30.03.2019

  • Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.

    учебное пособие [581,1 K], добавлен 08.02.2010

  • Методы решения нелинейных уравнений: касательных и хорд, результаты их вычислений. Алгоритм и блок схема метода секущих. Исследование характерных примеров для практического сравнения эффективности рассмотренных методов разрешения нелинейных уравнений.

    дипломная работа [793,2 K], добавлен 09.04.2015

  • Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.

    реферат [140,2 K], добавлен 27.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.