Джордж Буль

Краткая биографическая справка о жизни английского математика, логика, профессора колледжа Корка и одного из основателей математической логики - Д. Буля. История создания булевой алгебры и ее влияние на развитие современной вычислительной техники.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 20.10.2015
Размер файла 17,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

по теории математических учений

ДЖОРДЖ БУЛЬ

1. Биография

Джордж Буль родился 2 ноября 1815 года в промышленном городе Линкольне в восточной Англии в бедной рабочей семье. В те времена мальчик, родители которого были простыми рабочими, вряд ли мог надеяться получить солидное образование, а тем более сделать карьеру ученого. Материальное положение его родителей было тяжелым, поэтому Джордж смог окончить только начальную школу для детей бедняков, в других учебных заведениях он не учился.

В 1831 году в возрасте 16 лет Буль был вынужден поступить на работу, чтобы помочь семье. Четыре года он проработал на мало оплачиваемой должности помощника учителя, но затем, осмелев, решил открыть собственную школу, в которой он преподавал сам. В 1849 году в г. Корк (Ирландия) открылось новое высшее учебное заведение - Куинз колледж, по рекомендации коллег-математиков Буль получил здесь профессуру, которую сохранил до своей смерти в 1864 году.

2. Достижения в математике

Буль предпринял попытку построить формальную логику в виде некоторого "исчисления", "алгебры".

Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую ко всевозможным объектам, от чисел до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому, как в математике манипулируют числами.

Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ), отрицание (НЕ).

3. Введение в булеву алгебру

Теоретической базой при проектировании современных цифровых устройств, предназначенных для целей числовых вычислений, решения логических задач и задач управления, являются булева алгебра, двоичная арифметика и теория конечных автоматов. Логика - это наука о законах и формах мышления, математическая же логика занимается применением формальных математических методов для решения логических задач.

Базовым понятием булевой алгебры является понятие высказывания, под которым понимается любое утверждение, рассматриваемое только с точки зрения его истинности или ложности. В булевой алгебре не существует истинно-ложных или ложно-истинных высказываний.

Высказывание можно рассматривать как логическую переменную, которая может принимать различные значения, например, высказывание “сегодня понедельник” будет истинным в понедельник и ложным во все остальные дни недели. Исчисление высказываний как раз и основано на том, что их можно рассматривать как двоичные переменные, которые могут принимать одно из двух своих значений.

Примерами двоичных логических переменных являются разряды чисел, представленных в двоичной системе счисления, замкнутый или разомкнутый контакт, наличие или отсутствие тока в цепи, высокий или низкий потенциал в какой-либо точке схемы и т. п.

Высказывание называется простым, если значение его истинности не зависит от значений истинности других высказываний, и сложным, если значение его истинности зависит от других высказываний. Сложное высказывание можно рассматривать логической функцией, зависящей от простых высказываний и принимающей также два значения (истина, ложь). В свою очередь сложные высказывания могут служить переменными (аргументами) более сложных функций, т. е., при построении логических функций справедлив принцип суперпозиции.

Огромное значение для развития современной вычислительной техники сыграли работы английского ученого Джорджа Буля. Его теоретическая работа и введенные им операции над двоичными данными (логическое сложение, умножение и отрицание) стали теперь называться булевской (булевой) алгеброй.

Современные микросхемы, использующиеся в компьютерах, выполняют с данными именно такие операции.

4. Булева алгебра

Булевой алгеброй называется произвольное множество элементов А, В, С, для которых определены две операции - сложение и умножение, сопоставляющие каждым двум элементам a и b их сумму ab и произведение a b, определена операция "отрицание", сопоставляющая каждому элементу a новый элемент (-a), имеются два "особых" элементов 0 и 1 и выполняются следующие правила:

- коммутативные законы:

a + b = b + a a b = b a

- ассоциативные законы:

(a + b) + c = a + (b + c) (a b) c = a (b c)

- идемпотентные законы:

a + a = a a a = a

- дистрибутивные законы:

(a + b) c = a c + b c, a b + c = (a + c)(b + c)

- для 0:

a + 0 = a a 0 = 0 (-0) = 1

- для 1:

a + 1 = 1 a 1 = a (-1) = 0

- правила де Моргана:

(-(a + b)) = (-a) (-b) (-(a b)) = (-a) + (-b)

Заключение

Логические идеи Буля в последующие годы получили дальнейшее развитие. Логические исчисления, построенные в соответствии с идеями Буля, находят сейчас широкое применение в приложениях математической логики к технике, в частности к теории релейно-контактных схем. В современной алгебре есть булевы кольца, булевы алгебры - алгебраические системы, законы композиции которых берут свое начало от исчисления Буля. В общей топологии известно булево пространство, в математических проблемах управляющих систем - булев разброс, булево разложение, булева регулярная точка ядра. математик логика алгебра

Через некоторое время стало понятно, что система Буля хорошо подходит для описания электрических переключателей схем. Ток в цепи может либо протекать, либо отсутствовать, подобно тому, как утверждение может быть либо истинным, либо ложным. А еще несколько десятилетий спустя, уже в ХХ столетии, ученые объединили созданный Джорджем Булем математический аппарат с двоичной системой счисления, заложив тем самым основы для разработки цифрового электронного компьютера.

Размещено на Allbest.ru

...

Подобные документы

  • Системы цифровой обработки информации. Понятие алгебры Буля. Обозначения логических операций: дизъюнкция, конъюнкция, инверсия, импликация, эквивалентность. Законы и тождества алгебры Буля. Логические основы ЭВМ. Преобразование структурных формул.

    презентация [554,8 K], добавлен 11.10.2014

  • Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.

    реферат [63,3 K], добавлен 06.12.2010

  • Логический синтез устройства с использованием соотношений булевой алгебры. Составление таблицы истинности. Основные соотношения булевой алгебры. Логическая функция в смысловой, словесной, вербальной, табличной и аналитической математической формах.

    лабораторная работа [83,6 K], добавлен 26.11.2011

  • История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.

    контрольная работа [50,4 K], добавлен 10.10.2014

  • Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга.

    курс лекций [651,0 K], добавлен 08.08.2011

  • Применение методов математической логики и других разделов высшей математики в задачах теоретической лингвистики при анализе письменной речи на русском и английском языках. Исследование и распознавание речевых единиц. Методы математической логики.

    реферат [39,8 K], добавлен 01.11.2012

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

  • Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.

    контрольная работа [178,2 K], добавлен 20.01.2011

  • Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.

    контрольная работа [83,3 K], добавлен 26.04.2011

  • Основные понятия алгебры логики. Дизъюнктивные и конъюнктивные нормальные формы. Сущность теоремы Шеннона. Булевы функции двух переменных. Последовательное и параллельное соединение двух выключателей. Свойства элементарных функций алгебры логики.

    контрольная работа [345,3 K], добавлен 29.11.2010

  • Булевы алгебры – решетки особого типа, применяемые при исследовании логики (как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Минимальные формы булевых многочленов. Теоремы абстрактной булевой алгебры.

    курсовая работа [64,7 K], добавлен 12.05.2009

  • Оценка алгебры Ли как одного из классических объектов современной математики. Основные определения и особенности ассоциативной алгебры. Нильпотентные алгебры Ли, эквивалентность различных определений нильпотентности. Описание алгебр Ли малых размерностей.

    курсовая работа [79,4 K], добавлен 13.12.2011

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация [67,8 K], добавлен 23.12.2012

  • Определение формулы исчисления высказываний, основные цели математической логики. Построение формул алгебры высказываний. Равносильность формул исчисления высказываний, конъюнктивная и дизъюнктивная нормальная форма. Постановка проблемы разрешимости.

    контрольная работа [34,3 K], добавлен 12.08.2010

  • Краткая биографическая справка из жизни Пьера Ферма. Общее понятие про правильные многоугольники. Числа математика, их история. Великая теорема Ферма, случаи доказательства. Особенности облегченной и малой теоремы. Роль математики в деятельности Уайлсома.

    контрольная работа [501,2 K], добавлен 14.06.2012

  • Содержание математических трудов Герона. Влияние работ Герона в Европе. Место Клавдия Птолемея в истории науки. "Альмагест" как компендиум античной математической астрономии. Краткая биографическая справка из жизни Птолемея. "Планетные гипотезы" Птолемея.

    реферат [15,1 K], добавлен 15.12.2010

  • История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.

    презентация [3,6 M], добавлен 21.10.2011

  • Этапы развития логики. Имена ученых, внесших существенный вклад в развитие логики. Ключевые понятия монадической логики второго порядка. Язык логики предикатов. Автоматы Бучи: подход с точки зрения автоматов и полугрупп. Автоматы и бесконечные слова.

    курсовая работа [207,1 K], добавлен 26.03.2012

  • Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат [32,6 K], добавлен 06.09.2006

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.