Основні поняття теорії комплексних чисел

Геометричне зображення суми і різниці комплексних чисел. Математичний алгоритм переходу із тригонометричної форми в алгебраїчну і навпаки. Методика побудови таблиці Келі для операції множення. Доведення формули Муавра методом математичної індукції.

Рубрика Математика
Вид учебное пособие
Язык украинский
Дата добавления 06.11.2015
Размер файла 717,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Збагачення запасу чисел, введення ірраціональних чисел. Зведення комплексних чисел у ступінь і знаходження кореня. Окремий випадок формули Муавра. Труднощі при витягу кореня з комплексних чисел. Витяг квадратного кореня із негативного дійсного числа.

    курсовая работа [130,8 K], добавлен 26.03.2009

  • Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.

    реферат [75,3 K], добавлен 22.02.2010

  • Систематичний виклад питання рішення задач із комплексними числами. Приклади рішення задач із комплексними числами в алгебраїчній формі, задач з геометричною інтерпретацією комплексних чисел. Дії над комплексними числами в тригонометричній формі.

    дипломная работа [1,1 M], добавлен 12.02.2011

  • Узагальнення поняття теорії кілець. Будова півкільця натуральних чисел. Довільний ідеал півкільця натуральних чисел. Теорії напівгруп та константи Фробениуса. Система відрахувань по модулю. База методу математичної індукції. Текст програми "FindC".

    курсовая работа [89,6 K], добавлен 26.01.2011

  • Методи перевірки чисел на простоту: критерій Люка та його теореми, їх доведення. Теорема Поклінгтона та її леми. Метод Маурера - швидкий алгоритм генерації доведених простих чисел, близьких до випадкового та доведення Д. Коувером і Дж. Куіскуотером.

    лекция [138,8 K], добавлен 08.02.2011

  • Вивчення стандартних видів аксонометричних проекцій, які застосовуються як допоміжні до комплексних креслень у тих випадках, коли необхідне пояснююче наочне зображення форми деталей. Ізометрія, диметрія, способи їх побудови (осі, коефіцієнти спотворень).

    реферат [810,0 K], добавлен 13.11.2010

  • Побудова математичної логіки як алгебри висловлень і алгебри предикатів. Основні поняття логіки висловлювань та їх закони і нормальні форми. Основні поняття логіки предикатів і її закони, випереджена нормальна форма. Процедури доведення законів.

    курсовая работа [136,5 K], добавлен 27.06.2008

  • Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.

    курсовая работа [584,5 K], добавлен 18.07.2010

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Історія становлення поняття дійсного числа. Властивості ланцюгових дробів загального виду з додатними елементами. Зображення дійсних чисел ланцюговими дробами загального виду і системними дробами. Задачі, при розв’язанні яких використовуються ці дроби.

    курсовая работа [415,0 K], добавлен 02.03.2014

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Основні поняття теорії ймовірностей, означення випробування, випадкової, масової, вірогідної та неможливої події. Правило суми і множення. Теорема додавання і теорема добутку ймовірностей. Використання геометричної ймовірності, Парадокс Бертрана.

    научная работа [139,9 K], добавлен 28.04.2013

  • Поиски и доказательства простоты чисел Мерсенна. Окончание простых чисел Мерсенна на цифру 1 и 7. Вопрос сужения диапазона поиска. Эффективный алгоритм Миллера-Рабина. Разделение алгоритмов на вероятностные и детерминированные. Числа джойнт ряда.

    статья [127,5 K], добавлен 28.03.2012

  • Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.

    контрольная работа [25,7 K], добавлен 29.05.2012

  • Разработка индийскими математиками метода, позволяющего быстро находить простое число. Биография Эратосфена - греческого математика, астронома, географа и поэта. Признаки делимости чисел. Решето Эратосфена как алгоритм нахождения всех простых чисел.

    практическая работа [12,2 K], добавлен 09.12.2009

  • Поняття інтеграла Фур’є для функції дійсної змінної. Різні форми запису формули. Головне значення інтеграла та комплексна форма запису. Лінійне перетворення оберненого перетворення Фур’є. Алгоритм доведення ознаки Діні про початкову збіжність функції.

    курсовая работа [662,1 K], добавлен 27.04.2014

  • Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.

    курсовая работа [79,8 K], добавлен 27.07.2015

  • Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.

    дипломная работа [209,2 K], добавлен 08.08.2007

  • Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

    статья [406,8 K], добавлен 28.03.2012

  • Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа [27,8 K], добавлен 24.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.