Задачи математической статистики
Методы обработки экспериментальных данных. Случайные величины и законы распределения. Основные свойства плотности распределения. Числовые характеристики случайных величин. Кривые распределения с различной степенью крутости. Виды асимметрии распределений.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.11.2015 |
Размер файла | 337,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Актюбинский кооперативный колледж
Курсовая работа
По предмету «Основы математической статистики»
На тему: «Задачи математической статистики»
Специальность: 1304000 «Вычислительная техника и программное обеспечение»
Учащегося группы П-21
Завадского Андрея
Проверила: Пластун Н.А.
Актобе 2015
Тема «Задачи математической статистики»
Цель: Получить начальное понятие что такое вообще математическая статистика. Способы оптимальных решений. Математическая статистика- это наука, занимающаяся методами обработки экспериментальных данных.
Любая наука решает в порядке возрастания сложности и важности следующие задачи:
1) описание явления;
2) анализ и прогноз
3) поиск оптимального решения.
Такого рода задачи решает и математическая статистика:
1)систематизировать полученный статистический материал;
2)на основании полученных экспериментальных данных оценить интересующие нас числовые характеристики наблюдаемой случайной величины;
3)определить число опытов, достаточное для получения достоверных результатов при минимальных ошибках измерения.
Одной из задач третьего типа является задача проверки правдоподобия гипотез. Она может быть сформулирована следующим образом: имеется совокупность опытных данных, относящихся к одной или нескольким случайным величинам. Необходимо определить, противоречат ли эти данные той или иной гипотезе, например, гипотезе о том, что исследуемая случайная величина распределена по определенному закону, или две случайные величины не корректированы (т.е. не связаны между собой) и т.д. В результате проверки правдоподобия гипотезы она либо отбрасывается, как противоречащая опытным данным, либо принимается, как приемлемая.
Таким образом, математическая статистика помогает экспериментатору лучше разобраться в полученных опытных данных, оценить, значимы или нет определенные наблюденные факты, принять или отбросить те или иные гипотезы о природе рассматриваемого явления.
Случайные величины и законы распределения
Переменная величина называется случайной, если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения. Закон распределения - функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определенное значение хi или попадает в некоторый интервал. Если случайная величина имеет данный закон распределения, то говорят, что она распределена по этому закону или подчиняется этому закону распределения.
Случайная величина Х называется дискретной, если существует такая неотрицательная функция
(1)
которая ставит в соответствие значению хi переменной Х вероятность рi , с которой она принимает это значение.
Случайная величина Х называется непрерывной, если для любых a < b существует такая неотрицательная функция f(x), что
(2)
Функция f(x) называется плотностью распределения непрерывной случайной величины.
Вероятность того, что случайная величина Х (дискретная или непрерывная) принимает значение, меньшее х, называется функцией распределения случайной величины Х и обозначается F(x) :
(3)
Функция распределения является универсальным видом закона распределения, пригодным для любой случайной величины.
Общие свойства функции распределения:
(4)
Кроме этого универсального, существуют также частные виды законов распределения: ряд распределения (только для дискретных случайных величин) и плотность распределения (только для непрерывных случайных величин).
Основные свойства плотности распределения:
(5)
Каждый закон распределения - это некоторая функция, полностью описывающая случайную величину с вероятностной точки зрения. На практике о распределении вероятностей случайной величины Х часто приходится судить только по результатам испытаний. Повторяя испытания, будем каждый раз регистрировать, произошло ли интересующее нас случайное событие А, или нет. Относительной частотой (или просто частотой) случайного события А называется отношение числа nA появлений этого события к общему числу n проведенных испытаний. При этом мы принимаем, что относительные частоты случайных событий близки к их вероятностям. Это тем более верно, чем больше число проведенных опытов.
При этом частоты, как и вероятности, следует относить не к отдельным значениям случайной величины, а к интервалам. Это значит, что весь диапазон возможных значений случайной величины Х надо разбить на интервалы. Проводя серии испытаний, дающих эмпирические значения величины Х, надо фиксировать числа nx попаданий результатов в каждый интервал. При большом числе испытаний n отношение nx/n(частоты попадания в интервалы) должны быть близки к вероятностям попадания в эти интервалы. Зависимость частот nx/n от интервалов определяет эмпирическое распределение вероятностей случайной величины Х, графическое представление которой называется гистограммой (рис. 1).
Рис. 1. Гистограмма и выравнивающая плотность распределения
Для построения гистограммы по оси абсцисс откладывают интервалы равной длины, на которые разбивается весь диапазон возможных значений случайной величины Х, а по оси ординат откладывают частоты nx/n. Тогда высота каждого столбика гистограммы равна соответствующей частоте. Таким образом, получается приближенное представление закона распределения вероятностей для случайной величины Х в виде ступенчатой функции, аппроксимация (выравнивание) которой некоторой кривой f(x) даст плотность распределения.
Однако, часто бывает достаточно указать только отдельные числовые параметры, характеризующие основные свойства распределения. Эти числа называются числовыми характеристиками случайной величины.
экспериментальный распределение величина асимметрия
Числовые характеристики случайных величин
Математическое ожидание. Математическим ожиданием дискретной случайной величины Х, принимающей конечное число значений хi с вероятностями рi , называется сумма:
(6а)
Математическим ожиданием непрерывной случайной величины Х называется интеграл от произведения ее значений х на плотность распределения вероятностей f(x):
(6б)
Несобственный интеграл (6б) предполагается абсолютно сходящимся (в противном случае говорят, что математическое ожидание М (Х) не существует). Математическое ожидание характеризует среднее значение случайной величины Х. Его размерность совпадает с размерностью случайной величины.
Свойства математического ожидания:
(7)
Дисперсия. Дисперсией случайной величины Х называется число:
(8)
Дисперсия является характеристикой рассеяния значений случайной величины Х относительно ее среднего значения М ( Х). Размерность дисперсии равна размерности случайной величины в квадрате. Исходя из определений дисперсии (8) и математического ожидания (5) для дискретной случайной величины и (6) для непрерывной случайной величины получим аналогичные выражения для дисперсии:
(9)
Здесь m=М(Х).
Свойства дисперсии:
(10)
Среднее квадратичное отклонение:
(11)
Так как размерность среднего квадратичного отклонения та же, что и у случайной величины, оно чаще, чем дисперсия, используется как мера рассеяния.
Моменты распределения. Понятия математического ожидания и дисперсии являются частными случаями более общего понятия для числовых характеристик случайных величин - моментов распределения. Моменты распределения случайной величины вводятся как математические ожидания некоторых простейших функций от случайной величины.
Так, моментом порядка k относительно точки х0называется математическое ожидание М (Х - х0)k.
Моменты относительно начала координат х = 0 называются начальными моментами и обозначаются:
(12)
Начальный момент первого порядка есть центр распределения рассматриваемой случайной величины:
(13)
Моменты относительно центра распределения х = m называются центральными моментами и обозначаются:
(14)
Из (7) следует, что центральный момент первого порядка всегда равен нулю:
(15)
Центральные моменты не зависят от начала отсчета значений случайной величины, так как при сдвиге на постоянное значение С ее центр распределения сдвигается на то же значение С, а отклонение от центра не меняется:
Х-m= (Х-С) - (m-С)
Теперь очевидно, что дисперсия - это центральный момент второго порядка:
(16)
Асимметрия. Центральный момент третьего порядка:
(17)
служит для оценки асимметрии распределения. Если распределение симметрично относительно точки х=m, то центральный момент третьего порядка будет равен нулю (как и все центральные моменты нечетных порядков). Поэтому, если центральный момент третьего порядка отличен от нуля, то распределение не может быть симметричным. Величину асимметрии оценивают с помощью безразмерного коэффициента асимметрии:
(18)
Знак коэффициента асимметрии (18) указывает на правостороннюю или левостороннюю асимметрию (рис. 2).
Рис. 2. Виды асимметрии распределений
Эксцесс. Центральный момент четвертого порядка:
(19)
служит для оценки так называемого эксцесса, определяющего степень крутости (островершинности) кривой распределения вблизи центра распределения по отношению к кривой нормального распределения. Так как для нормального распределения, то в качестве эксцесса принимается величина:
(20)
На рис. 3 приведены примеры кривых распределения с различными значениями эксцесса. Для нормального распределения Е= 0. Кривые, более островершинные, чем нормальная, имеют положительный эксцесс, более плосковершинные - отрицательный.
Рис. 3. Кривые распределения с различной степенью крутости (эксцессом)
Моменты более высоких порядков в инженерных приложениях математической статистики обычно не применяются.
Мода дискретной случайной величины - это ее наиболее вероятное значение. Модой непрерывной случайной величины называется ее значение, при котором плотность вероятности максимальна (рис. 2). Если кривая распределения имеет один максимум, то распределение называется унимодальным. Если кривая распределения имеет более одного максимума, то распределение называетсяполимодальным. Иногда встречаются распределения, кривые которых имеют не максимум, а минимум. Такие распределения называютсяантимодальными. В общем случае мода и математическое ожидание случайной величины не совпадают. В частном случае, длямодального, т.е. имеющего моду, симметричного распределения и при условии, что существует математическое ожидание, последнее совпадает с модой и центром симметрии распределения.
Медиана случайной величины Х - это ее значение Ме , для которого имеет место равенство: т.е. равновероятно, что случайная величина Х окажется меньше или больше Ме. Геометрически медиана - это абсцисса точки, в которой площадь под кривой распределения делится пополам (рис. 2). В случае симметричного модального распределения медиана, мода и математическое ожидание совпадают.
Размещено на Allbest.ur
...Подобные документы
Классическое, статистическое и геометрическое определения вероятности. Дискретные случайные величины и законы их распределения. Числовые характеристики системы случайных величин. Законы равномерного и нормального распределения систем случайных величин.
дипломная работа [797,0 K], добавлен 25.02.2011Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.
лекция [387,7 K], добавлен 12.12.2011Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.
презентация [1,4 M], добавлен 19.07.2015События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.
контрольная работа [118,5 K], добавлен 30.01.2015Пространства элементарных событий. Совместные и несовместные события. Функция распределения системы случайных величин. Функции распределения и плотности распределения отдельных составляющих системы случайных величин. Условные плотности распределения.
задача [45,4 K], добавлен 15.06.2012Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.
практическая работа [103,1 K], добавлен 15.06.2012Понятие случайной величины, а также ее основные числовые характеристики. Случайная величина, подчиняющаяся нормальному закону распределения. Кривые плотности вероятности. Использование генератора случайных чисел. Изображение векторов в виде графика.
лабораторная работа [301,4 K], добавлен 27.05.2015Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.
реферат [174,7 K], добавлен 25.10.2015Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.
презентация [1,4 M], добавлен 19.07.2015Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.
контрольная работа [59,7 K], добавлен 26.07.2010Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.
реферат [325,3 K], добавлен 23.01.2011Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.
контрольная работа [705,1 K], добавлен 22.11.2013Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод наибольшего правдоподобия для нахождения плотности распределения. Применение метода наименьших квадратов.
контрольная работа [62,6 K], добавлен 20.02.2011Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.
реферат [146,5 K], добавлен 19.08.2015Вероятность совместного выполнения двух неравенств в системе двух случайных величин. Свойства функции распределения. Определение плотности вероятности системы через производную от соответствующей функции распределения. Условия закона распределения.
презентация [57,9 K], добавлен 01.11.2013Пространство элементарных событий. Совместные и несовместные события. Плотность распределения вероятностей системы двух случайных величин. Эмпирическая функция распределения. Числовые характеристики случайной функции. Условие независимости двух событий.
контрольная работа [30,0 K], добавлен 15.06.2012Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.
курсовая работа [57,0 K], добавлен 13.10.2009Методы регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений. Обзор задач математической статистики. Закон распределения случайной величины. Проверка правдоподобия гипотез.
презентация [113,3 K], добавлен 01.11.2013Предмет и метод математической статистики. Распределение непрерывной случайной величины с точки зрения теории вероятности на примере логарифмически-нормального распределения. Расчет корреляции величин и нахождение линейной зависимости случайных величин.
курсовая работа [988,5 K], добавлен 19.01.2011Классическая формула для вероятности события, отношение благоприятного числа исходов опыта к общему числу всех равновозможных несовместных исходов. Понятие непрерывной и дискретной случайной величины, их числовые характеристики и законы распределения.
презентация [5,5 M], добавлен 19.07.2015