Операции с определителями в математике

Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 24.11.2015
Размер файла 42,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция 1. Определители

Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной), если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени.

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ

обозначает подстановку, в которой 3 переходит в 4, 1 ® 2, 2 ® 1, 4 ® 3. Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде

,

т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

.(1.3)

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

,(1.4)

число матрица определитель

где индексы q1, q2,..., qn составляют некоторую перестановку из чисел 1, 2,..., n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (1.4) равен (- 1)q, где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (1.3), называется алгебраическая сумма n! членов вида (1.4). Для записи определителя употребляется симво

Или

det A

(детерминант, или определитель, матрицы А).

Свойства определителей

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых

ai j = bj + cj (j=),

то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором Mi j элемента ai j определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента ai j определителя d называется его минор Mi j, взятый со знаком (-1) i + j. Алгебраическое дополнение элемента ai j будем обозначать Ai j. Таким образом,

Ai j = (-1) i + j Mi j.

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

d = ai 1 Ai 1 + ai 2 Ai 2 +... + ai n Ai n (i = )

или j- го столбца

d = a1 j A1 j + a2 j A2 j +... + an j An j (j = ).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Пример 2.4. Не вычисляя определителя

,

показать, что он равен нулю.

Решение. Вычтем из второй строки первую, получим определитель

,

равный исходному. Если из третьей строки также вычесть первую, то получится определитель

,

в котором две строки пропорциональны. Такой определитель равен нулю.

Пример 2.5. Вычислить определитель

D = ,

разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:

D = a12A12 + a22A22+a32A32=

.

Пример 2.6. Вычислить определитель

,

в котором все элементы по одну сторону от главной диагонали равны нулю.

Решение. Разложим определитель А по первой строке:

.

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

.

И так далее. После n шагов придем к равенству

A = а11 а22... ann.

Пример 2.7. Вычислить определитель

.

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель:

,

равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.

Вопросы для самопроверки

1. Напишите, формулы для вычисления определителей второго и третьего порядков

2. Какой определитель называется транспонированным?

3. Сформулируйте свойства определителей

4. Что называется минором некоторого элемента определителя третьего порядка?

5. Что называется алгебраическим дополнением некоторого элемента определителя третьего порядка?

6. Как связана между собой минор и алгебраические дополнения7

7. Напишите разложение определителя третьего порядка по элементам второй строки и третьего столбца

8. Сформулируйте теорему Лапласа

9. Как записывается определитель n-го порядка?

10. Перечислите случаи, когда определитель равен нулю

Размещено на Allbest.ru

...

Подобные документы

  • Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.

    лекция [55,2 K], добавлен 02.06.2008

  • Основные операции над матрицами и их свойства. Произведение матриц или перемножение матриц. Блочные матрицы. Понятие определителя. Панель инструментов Матрицы. Транспонирование. Умножение. Определитель квадратной матрицы. Модуль вектора.

    реферат [109,2 K], добавлен 06.04.2003

  • Определители второго и третьего порядка. Перестановки и подстановки. Миноры и алгебраические дополнения. Применение методов приведения определителя к треугольному виду, представления определителя в виде суммы определителей, выделения линейных множителей.

    курсовая работа [456,6 K], добавлен 19.07.2013

  • Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.

    контрольная работа [320,1 K], добавлен 13.07.2009

  • Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.

    контрольная работа [95,0 K], добавлен 23.02.2012

  • Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.

    контрольная работа [239,4 K], добавлен 19.06.2009

  • Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.

    реферат [60,2 K], добавлен 17.06.2014

  • Понятие и назначение определителей, их общая характеристика, методика вычисления и свойства. Алгебра матриц. Системы линейных уравнений и их решение. Векторная алгебра, ее закономерности и принципы. Свойства и приложения векторного произведения.

    контрольная работа [996,2 K], добавлен 04.01.2012

  • Понятие обратной матрицы. Пошаговое определение обратной матрицы: проверка существования квадратной и обратной матрицы, расчет определителя и алгебраического дополнения, получение единичной матрицы. Пример расчета обратной матрицы согласно алгоритма.

    презентация [54,8 K], добавлен 21.09.2013

  • Определение, свойства, виды и историческое происхождение матриц. Расчет определителя третьего порядка. Правило Саррюса для треугольников. Алгоритм построения и единственность обратной матрицы. Исследование линейных отображений векторных пространств.

    контрольная работа [308,2 K], добавлен 12.12.2013

  • Нахождение определителя матрицы. Правило вычисления определителя 3-го порядка. Тождественные преобразования в виде цепочки действий. Симметрическая разность множеств. Область определения функции. Доказание равносильности формулы путем преобразований.

    контрольная работа [46,6 K], добавлен 13.03.2011

  • Число, характеризующее квадратную матрицу. Вычисление определителя первого и второго порядков матрицы. Использование правила треугольников. Алгебраическое дополнение некоторого элемента определителя. Перестановка двух строк или столбцов определителя.

    презентация [81,5 K], добавлен 21.09.2013

  • Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.

    учебное пособие [223,0 K], добавлен 04.03.2010

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция [268,6 K], добавлен 07.05.2013

  • Прямоугольная таблица, составленная из чисел или матрица. Произвольная квадратная матрица, ее численная характеристика (определитель). Определители первого и второго порядка. Понятие минора элемента матрицы. Свойства определителей, транспонирование.

    реферат [56,8 K], добавлен 19.08.2009

  • Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.

    реферат [203,0 K], добавлен 12.08.2009

  • Вычисление определителя с использованием правила треугольника и метода разложения по элементам ряда. Решение системы уравнений тремя способами: методом Гаусса, методом Кремера и матричным методом. Составление уравнения прямой и плоскости по формуле.

    контрольная работа [194,5 K], добавлен 16.02.2015

  • Интерпретация ортогональной и унитарной матрицы. Основные детерминанты матриц. Определение комплексных квадратных невырожденных и вырожденных матриц. Методы нахождения определителя. Метод конденсации Доджсона. Кососимметричная полилинейная функция строк.

    курсовая работа [620,9 K], добавлен 04.06.2015

  • Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

    курсовая работа [103,0 K], добавлен 28.02.2010

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.