Теория графов

Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.

Рубрика Математика
Предмет Дискретная математика
Вид контрольная работа
Язык русский
Прислал(а) incognito
Дата добавления 18.12.2015
Размер файла 727,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.

    дипломная работа [272,5 K], добавлен 05.06.2014

  • Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.

    лабораторная работа [85,5 K], добавлен 09.01.2009

  • Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.

    дипломная работа [145,5 K], добавлен 19.07.2011

  • Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.

    реферат [368,2 K], добавлен 13.06.2011

  • Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.

    курсовая работа [625,4 K], добавлен 30.09.2014

  • Рассмотрение понятия и видов графов как совокупности непустого конечного множества элементов; условия их связанности. Доказательства существования замкнутых Эйлеровой, Гамильнотовой и бесконечной цепей. Ознакомление с элементарными свойствами деревьев.

    курсовая работа [1,4 M], добавлен 10.02.2012

  • Общая характеристика графов с нестандартными достижимостями, их применение. Особенности задания, представления и разработки алгоритмов решения задач на таких графах. Описание нового класса динамических графов, программной реализации полученных алгоритмов.

    реферат [220,4 K], добавлен 22.11.2010

  • Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.

    курсовая работа [1,8 M], добавлен 18.01.2013

  • Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.

    курсовая работа [1006,8 K], добавлен 23.12.2007

  • Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.

    презентация [150,3 K], добавлен 16.01.2015

  • Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.

    презентация [430,0 K], добавлен 19.11.2013

  • История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.

    курсовая работа [636,2 K], добавлен 20.12.2015

  • Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.

    реферат [131,8 K], добавлен 11.11.2008

  • Основополагающие понятия теории графов. Определение эквивалентности, порождаемое группой подстановок, и доказательство леммы Бернсайда о числе ее классов. Понятие перечня конфигурации и доказательство теоремы Пойа. Решение задачи о перечислении графов.

    курсовая работа [649,2 K], добавлен 18.01.2014

  • Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.

    курсовая работа [713,8 K], добавлен 16.05.2016

  • Общие сведения о фигурах, вычерчиваемых одним росчерком. Теория графов Эйлера, задача о мостах. Правила построения фигуры без отрыва карандаша от бумаги. Задача об эйлеровом пути, применение графов в жизни, быту, различных отраслях науки и техники.

    реферат [3,6 M], добавлен 16.12.2011

  • Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.

    реферат [81,0 K], добавлен 23.11.2008

  • Математическое описание системы автоматического управления с помощью графов. Составление графа и его преобразование, избавление от дифференциалов. Оптимизации ориентированных и неориентированных графов, составления матриц смежности и инцидентности.

    лабораторная работа [42,2 K], добавлен 11.03.2012

  • Сущность и основные понятия теории графов, примеры и сферы ее использования. Формирование следствий из данных теорий и примеры их приложений. Методы разрешения задачи о кратчайшем пути, о нахождении максимального потока. Графическое изображение задачи.

    курсовая работа [577,1 K], добавлен 14.11.2009

  • Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.

    курсовая работа [682,9 K], добавлен 20.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.