Геометрия Лобачевского

Геометрия греческого математика Евклида и доказание пятой аксиомы о параллельных прямых. Гиперболический параболоид и описание искривленного пространства в геометрии Лобачевского, а также использование его формул в расчетах современных синхрофазотронов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 13.12.2015
Размер файла 284,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО

Люди занимались геометрией с глубокой древности, но в виде стройной логической системы она впервые была изложена только в III в. до Рождества Христова замечательным греческим математиком Евклидом. В основе всей геометрии Евклида лежало несколько простых первоначальных утверждений, которые принимались за истинные без доказательств. Когда в последующих веках математика обрела вид строгой науки, были сделаны многочисленные попытки доказать евклидовы аксиомы. Особый интерес математиков всегда вызывала пятая аксиома о параллельных прямых, которая гласит: в данной плоскости к данной прямой можно через данную, не лежащую на этой прямой, точку провести только одну параллельную прямую.

С таких попыток начал и Лобачевский. Чтобы доказать пятую аксиому, он принял противоположное этой аксиоме допущение, что к данной прямой через данную точку можно провести бесконечное множество параллельных прямых. Лобачевский пытался привести это допущение к противоречию с другими аксиомами Евклида, однако, по мере того как он развертывал из сделанного им допущения все более и более длинную цепь следствий, ему становилось ясным, что никакого противоречия не только не получается, но и не может получиться. Итак, вместо противоречия Лобачевский получил хоть и своеобразную, но логически совершенно стройную и безупречную систему положений, обладающую тем же логическим совершенством, что и обычная евклидова геометрия. Эта система положений и составила так называемую неевклидову геометрию, или геометрию Лобачевского.

Как показали позднейшие исследования, геометрия Лобачевского совершенно истинна, если ее рассматривать не на плоскости, а на поверхности гиперболического параболоида (вогнутой поверхности, напоминающей седло). Гиперболический параболоид играет в геометрии Лобачевского ту же роль, что плоскость в геометрии Евклида. (Например, отрезком здесь называется дуга, длина которой определяет кратчайшее расстояние между двумя точками поверхности.)

Сам Лобачевский совершенно верно утверждал, что различия между его геометрией и геометрией Евклида кроются в понимании самой природы пространства. В евклидовой геометрии пространству отводится роль беспредельной и нейтральной протяженности, вместилища, в которое погружены тела. Однако Лобачевский был уверен, что наше представление о «плоском» пространстве -- не более чем дань традиции, никогда не проверявшаяся опытным путем. На самом деле физическое трехмерное пространство искривлено, и лишь в бесконечно малых областях его можно считать плоским, евклидовым. Мерой отличия любого пространства от евклидова является его кривизна. В наших земных пределах этой кривизной можно пренебречь и пользоваться положениями и теоремами евклидовой геометрии. Однако при измерении беспредельных космических расстояний пренебрежение кривизной пространства может привести к серьезным ошибкам. евклид геометрия лобачевский пространство

Идеи Лобачевского были настолько революционными и до того опередили свой век, что не могли быть понятыми даже крупными математиками того времени. Поэтому новая геометрия не была признана современниками, была встречена с полным равнодушием и даже с иронией. Ее многие считали сплошной фантазией, а ее автора чудаком или даже невеждой. Одинокий Лобачевский не отказался от своих идей. Он твердо был убежден в логической правильности неевклидовой геометрии. Чтобы можно было это доказать, Лобачевский предпринимал астрологические наблюдения, и производил измерения углов космических треугольников, стороны которых измерялись расстояниями от Земли до небесных тел, в надежде установить, равна ли сумма углов треугольника 2d или она меньше двух прямых углов.

В окружающей нас среде свойства физического пространства приблизительно таковы, какими мы их знаем из евклидовой геометрии, но для всего пространства, для мира звёзд, для вселенной в целом, они иные, неевклидовы. Геометрия Лобачевского описывает искривленное пространство. Геометрия Лобачевского нашла свою реализацию в теории относительности Альберта Эйнштейна. Лобачевский проводил астрономические эксперименты. Он измерял сумму углов треугольника, вершинами которого были астрономическая обсерватория и две далёкие звезды.

В расчетах современных синхрофазотронов используется формулы геометрии Лобачевского. Синхрофазотрон - это ускоритель заряженных частиц. Простейший ускоритель электронов - это телевизор, вернее его основная деталь - электронно-лучевая трубка или кинескоп.

Геометрия Лобачевского способствовала и способствует более глубокому пониманию окружающего нас материального мира. Изучение космического пространства, исследования в области высоких энергий и многое другое было бы невозможно без применения геометрии Лобачевского. Размещено на Allbest.ru

...

Подобные документы

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа [4,1 M], добавлен 15.03.2011

  • Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

    реферат [319,1 K], добавлен 06.03.2009

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Биография Николая Ивановича Лобачевского - выдающегося российского математика. Главные достижения Н.И. Лобачевского - доказательство того, что существует более чем одна "истинная" геометрия, геометрические исследования по теории параллельных линий.

    презентация [2,9 M], добавлен 19.03.2012

  • Геометрия Евклида — теория, основанная на системе аксиом, изложенной в "Началах". Гиперболическая геометрия Лобачевского, ее применение в математике и физике. Реализация геометрии Римана на поверхностях с постоянной положительной гауссовской кривизной.

    презентация [685,4 K], добавлен 12.09.2013

  • Биография русского ученого Н.И. Лобачевского. Система аксиом Гильберта. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому. Понятие о сферической геометрии. Доказательство теорем на различных моделях.

    реферат [564,5 K], добавлен 12.11.2010

  • Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.

    дипломная работа [1,3 M], добавлен 10.09.2009

  • Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.

    дипломная работа [245,5 K], добавлен 13.02.2010

  • Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.

    дипломная работа [4,4 M], добавлен 05.03.2011

  • Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.

    презентация [872,8 K], добавлен 24.02.2011

  • Биография Н.И. Лобачевского. Деятельность Лобачевского по организации печатного университетского органа и его попытки основать при университете Научное общество. История признания геометрии Н.И. Лобачевского в России. Появление неевклидовой геометрии.

    дипломная работа [1,2 M], добавлен 14.09.2011

  • Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.

    дипломная работа [1,8 M], добавлен 21.08.2011

  • Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.

    презентация [1,9 M], добавлен 06.05.2010

  • Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.

    курсовая работа [629,3 K], добавлен 29.06.2013

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа [192,3 K], добавлен 24.11.2009

  • Анализ проявлений недоказуемости пятого постулата Евклида. Общая характеристика и обоснование основных идей неевклидовской геометрии в работах Д. Саккери, И.Г. Ламберта, Я. Бояи, Ф. Швейкарта, Ф.А. Тауринуса, К.Ф. Гаусса, Н.И. Лобачевского, Я. Больяйя.

    реферат [29,4 K], добавлен 21.09.2010

  • Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

    реферат [32,3 K], добавлен 14.07.2004

  • Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.

    презентация [527,9 K], добавлен 23.03.2011

  • Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Основные этапы становления и развития данной науки, ее современные достижения и перспективы.

    презентация [1,9 M], добавлен 21.05.2012

  • Начальные геометрические сведения и формирования представлений учеников о понятиях точки, прямой, отрезка, треугольника, параллельных прямых, их расположение относительно друг друга. Задачи на вычисление геометрических величин и изображение фигур.

    презентация [222,5 K], добавлен 15.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.