Характеристика кристаллической решетки
Кристаллическая решетка как вспомогательный геометрический образ, вводимый для анализа строения кристалла. Виды решеток Браве. Базоцентрированные системы трансляций. Характеристика орторомбической, ромбической, моноклинной и триклинной сингонии.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 27.12.2015 |
Размер файла | 21,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Кристаллическая решётка
Кристаллическая решётка -- вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с элементами симметрии.
В зависимости от пространственной симметрии, все кристаллические решётки подразделяются на семь кристаллических систем. По форме элементарной ячейки они могут быть разбиты на шесть сингоний. Все возможные сочетания имеющихся в кристаллической решётке поворотных осей симметрии и зеркальных плоскостей симметрии приводят к делению кристаллов на 32 класса симметрии, а с учётом винтовых осей симметрии и скользящих плоскостей симметрии на 230 пространственных групп.
Помимо основных трансляций, на которых строится элементарная ячейка, в кристаллической решётке могут присутствовать дополнительные трансляции, называемые решётками Браве. В трёхмерных решётках бывают гранецентрированная (F), объёмноцентрированная (I), базоцентрированная (A, B или C), примитивная (P) и ромбоэдрическая (R) решётки Браве. Примитивная система трансляций состоит из множества векторов (a, b, c), во все остальные входят одна или несколько дополнительных трансляций. Так, в объёмноцентрированную систему трансляций Браве входит четыре вектора (a, b, c, Ѕ(a+b+c)), в гранецентрированную -- шесть (a, b, c, Ѕ(a+b), Ѕ(b+c), Ѕ(a+c)). Базоцентрированные системы трансляций содержат по четыре вектора: A включает вектора (a, b, c, Ѕ(b+c)), B -- вектора (a, b, c, Ѕ(a+c)), а C -- (a, b, c, Ѕ(a+b)), центрируя одну из граней элементарного объёма. В системе трансляций Браве R дополнительные трансляции возникают только при выборе гексагональной элементарной ячейки и в этом случае в систему трансляций R входят вектора (a, b, c, 1/3(a+b+c), --1/3(a+b+c)).
Сингонии:
· Низшая категория (все трансляции не равны друг другу)
Триклинная: элементарная ячейка в которой строится на трёх базовых векторах (трансляциях) разной длины, все углы, между которыми, не являются прямыми. В триклинной сингонии существуют две точечные группы, одна из которых ( 1 ) не обладает ни одним элементом симметрии, а другая ( ) -- имеет только центр симметрии.
Моноклинная: в кристаллографии одна из семи сингоний. Элементарная ячейка моноклинной сингонии строится на трёх векторах a, b, и c, имеющих разную длину, с двумя прямыми и одним непрямым углами между ними.
В моноклинной сингонии существует два вида решеток Бравэ: простая (примитивная) и базоцентрированная.
Ромбическая: Её элементарная ячейка определяется тремя базовыми векторами (трансляциями), которые перпендикулярны друг к другу, но не равны между собой. Часто используется другое название -- орторомбическая сингония. кристаллический решетка геометрический кристалл
В орторомбической сингонии существует четыре вида решёток Бравэ: простая, базоцентрированная, объёмно-центрированная и гранецентрированная.
· Средняя категория (две трансляции из трёх равны между собой)
Тетрагональная: Два из трех базовых векторов имеют одинаковую длину, а третий отличается от них. Все три вектора перпендикулярны друг к другу.
В тетрагональной сингонии существует две решётки Браве: примитивная и объёмно-центрированная.
Гексагональная: Её элементарная ячейка строится на трёх базовых векторах (трансляциях), два из которых равны и образуют угол 120°, а третий им перпендикулярен. В гексагональной сингонии три элементарных ячейки образуют правильную призму на шестигранном основании.
Графит -- пример гексагонального кристалла.
· Высшая категория (все трансляции равны между собой)
Кубическая: Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу.
В кубической сингонии существует три вида решёток Бравэ: примитивная, объёмно-центрированная и гранецентрированная.
Объём элементарной ячейки в общем случае вычисляется по формуле:
Размещено на Allbest.ru
...Подобные документы
Построение объектов, изоморфных данным алгебраическим структурам. Решетки конгруэнций Ламбека по простым идеалам. Теоремы об изоморфизме и свойства пучковых представлений. Функциональные пучки Ламбека и Корниша для ограниченных дистрибутивных решеток.
дипломная работа [1,5 M], добавлен 12.06.2010Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.
курсовая работа [64,0 K], добавлен 04.06.2015Формулировка и графическая интерпретация закона Вейса. Вывод возможных граней кристалла. Простые формы кристалла, кратность точечной группы. Закрытые и открытые простые формы, их особенности и характеристика. Образец типовой записи группы симметрии.
презентация [363,4 K], добавлен 23.09.2013Основы тензорного анализа. Геометрический смысл и формула расчета коэффициентов Ламе. Взаимный базис; полярная, цилиндрическая и сферическая системы координат. Рассмотрение способов преобразования векторов при переходе к криволинейным координатам.
курсовая работа [4,0 M], добавлен 06.11.2013Определение равнодействующей сходящихся сил геометрическим способом. Геометрическое условие равновесия сходящихся сил. Разложение силы по координатным осям, аналитический способ определения по проекциям. Равновесие тела под действием плоской системы сил.
реферат [421,3 K], добавлен 20.01.2010Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.
презентация [696,5 K], добавлен 18.12.2014Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, как предел интегральной суммы. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница. Геометрический и механический смысл определенного интеграла.
реферат [576,4 K], добавлен 30.10.2010Определение погрешности вычислений при численном дифференцировании. Алгебраический порядок точности численного метода как наибольшей степени полинома. Основной и вспомогательный бланк для решения задачи Коши. Применение интерполяционной формулы Лагранжа.
реферат [1,4 M], добавлен 10.06.2012Систематизация основных результатов о частично насыщенных формациях, их локальных спутниках и решетках. Исследование внутренних локальных спутников формации, насыщенные формации с ограниченым H-дефектом, у которых решетка содержит дополнения.
дипломная работа [530,5 K], добавлен 13.12.2009Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.
курсовая работа [1,3 M], добавлен 13.02.2013Понятие предела функции и основные требования, предъявляемые к нему, геометрический смысл. Методика определения данной геометрической категории в заданной точке при различных условиях. Вычисление ординат графиков. Возрастание по абсолютной величине.
презентация [902,2 K], добавлен 21.09.2013Определение двойного интеграла, его геометрический смысл, свойства, область интегрирования. Условия существования двойного интеграла, его сведения к повторному; формула преобразования при замене переменных, геометрические и физические приложения.
презентация [1,5 M], добавлен 18.03.2014Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация [174,5 K], добавлен 18.09.2013Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.
курсовая работа [491,4 K], добавлен 13.01.2014Однородные системы линейных неравенств и выпуклые конусы. Применение симплекс-метода для отыскания опорного решения системы линейных неравенств, ее геометрический смысл. Основная задача линейного программирования. Теорема Минковского, ее доказательство.
курсовая работа [807,2 K], добавлен 03.04.2015Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.
дипломная работа [884,6 K], добавлен 24.06.2015Теорема Ферма: содержание, доказательство, геометрический смысл. Теорема Ролля: производная функции, отсутствие непрерывности Отсутствует и дифференцируемости. Доказательство теоремы Лагранжа, общий вид, геометрический смысл, содержание следствия.
презентация [199,4 K], добавлен 21.09.2013История, понятия и методы решения задач на экстремум. Знаменитые задачи на максимум и минимум: Кеплера, Фаньяно, Дидоны и Ферма–Торричелли–Штейнера. Аналитический и геометрический методы как более подходящие инструменты решения с научной точки зрения.
курсовая работа [483,0 K], добавлен 10.01.2015Алгоритм и логика решения задач категории B8 из раздела "математический анализ" Единого государственного экзамена. Определение точек максимума и минимума. Нахождение интервалов возрастания и убывания функции. Геометрический смысл определенного интеграла.
методичка [350,9 K], добавлен 23.04.2013Зависимость строения пленки и поверхностного натяжения. Решение задачи Плато для сложного контура. Принцип минимума энергии. Теория многогранников. Особенности строения контуров и натяжения мыльных пленок. Изучение строения мыльной пены в геометрии.
презентация [6,6 M], добавлен 24.04.2016