Характеристика и методы решения кооперативных игр

Персональность, супераддитивность и дополнительность как основные свойства характеристической функции бескоалиционной игры. Методика определения стратегической эквивалентности кооперативных игр. Естественные условия распределения выигрышей игроков.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 22.01.2016
Размер файла 12,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Кооперативные игры получаются в тех случаях, когда, в игре n игроков разрешается образовывать определённые коалиции. Обозначим через N множество всех игроков, N ={1, 2, ..., n}, а через K любое его подмножество. Пусть игроки из K договариваются между собой о совместных действиях и, таким образом, образуют одну коалицию. Очевидно, что число таких коалиций, состоящих из r игроков, равно числу сочетаний из n по r , то есть , а число всевозможных коалиций равно:

= 2n 1.

Из этой формулы видно, что число всевозможных коалиций значительно растёт в зависимости от числа всех игроков в данной игре. Для исследования этих игр необходимо учитывать все возможные коалиции, и поэтому трудности исследований возрастают с ростом n. Образовав коалицию, множество игроков K действует как один игрок против остальных игроков, и выигрыш этой коалиции зависит от применяемых стратегий каждым из n игроков.

Функция , ставящая в соответствие каждой коалиции K наибольший, уверенно получаемый его выигрыш (K), называется характеристической функцией игры. Так, например, для бескоалиционной игры n игроков (K) может получиться, когда игроки из множества K оптимально действуют как один игрок против остальных N\K игроков, образующих другую коалицию (второй игрок).

Характеристическая функция называется простой, если она принимает только два значения: 0 и 1. Если характеристическая функция простая, то коалиции K, для которых (K)=1, называются выигрывающими, а коалиции K, для которых (K) = 0, проигрывающими.

Если в простой характеристической функции выигрывающими являются те и только те коалиции, которые содержат фиксированную непустую коалицию R, то характеристическая функция , обозначаемая в этом случае через R, называется простейшей.

Содержательно простые характеристические функции возникают, например, в условиях голосования, когда коалиция является выигрывающей, если она собирает более половины голосов (простое большинство) или не менее двух третей голосов (квалифицированное большинство).

Более сложным является пример оценки результатов голосования в Совете безопасности ООН, где выигрывающими коалициями являются все коалиции, состоящие из всех пяти постоянных членов Совета плюс ещё хотя бы один непостоянный член, и только они.

Простейшая характеристическая функция появляется, когда в голосующем коллективе имеется некоторое ядро, голосующее с соблюдением правила вето, а голоса остальных участников оказываются несущественными.

Обозначим через G характеристическую функцию бескоалиционной игры. Эта функция обладает следующими свойствами:

персональность:

G() = 0,

т.е. коалиция, не содержащая ни одного игрока, ничего не выигрывает;

супераддитивность:

G(KL) G(K) + G(L), если K, L N, KL ,

т.е. общий выигрыш коалиции не меньше суммарного выигрыша всех участников коалиции;

дополнительность:

G(K) + (N\K) = (N)

т.е. для бескоалиционной игры с постоянной суммой сумма выигрышей коалиции и остальных игроков должна равняться общей сумме выигрышей всех игроков.

Распределение выигрышей (делёж) игроков должно удовлетворять следующим естественным условиям: если обозначить через xi выигрыш i-го игрока, то, во-первых, должно удовлетворяться условие индивидуальной рациональности:

xi ( i ), для i N

т.е. любой игрок должен получить выигрыш в коалиции не меньше, чем он получил бы, не участвуя в ней (в противном случае он не будет участвовать в коалиции); во-вторых, должно удовлетворяться условие коллективной рациональности:

= (N)

т.е. сумма выигрышей игроков должна соответствовать возможностям (если сумма выигрышей всех игроков меньше, чем (N), то игрокам незачем вступать в коалицию; если же потребовать, чтобы сумма выигрышей была больше, чем (N), то это значит, что игроки должны делить между собой сумму большую, чем у них есть).

Таким образом, вектор x = (x1, ..., xn), удовлетворяющий условиям индивидуальной и коллективной рациональности, называется дележём в условиях характеристической функции .

Система {N, }, состоящая из множества игроков, характеристической функции над этим множеством и множеством дележей, удовлетворяющих соотношениям (2) и (3) в условиях характеристической функции, называется классической кооперативной игрой.

Из этих определений непосредственно вытекает следующая

Теорема. Чтобы вектор x = (x1, ..., xn) был дележём в классической кооперативной игре {N, }, необходимо и достаточно, чтобы:

xi = ( i ) + i, (iN)

причём:

супераддитивность бескоалиционный эквивалентность кооперативный

i 0 (iN)

= (N)

В бескоалиционных играх исход формируется в результате действий тех самых игроков, которые в этой ситуации получают свои выигрыши. Исходом в кооперативной игре является делёж, возникающий не как следствие действия игроков, а как результат их соглашений. Поэтому в кооперативных играх сравниваются не ситуации, как это имеет место в бескоалиционных играх, а дележи, и сравнение это носит более сложный характер.

Кооперативные игры считаются существенными, если для любых коалиций K и L выполняется неравенство:

(K) + (L) < (KL),

т.е. в условии супераддитивности выполняется строгое неравенство. Если же в условии супераддитивности выполняется равенство:

(K) + (L) = (KL),

т.е. выполняется свойство аддитивности, то такие игры называются несущественными.

Справедливы следующие свойства:

1) для того чтобы характеристическая функция была аддитивной (кооперативная игра несущественной), необходимо и достаточно выполнение следующего равенства:

= (N)

2) в несущественной игре имеется только один делёж:

{(1) , (2) , ... , (n) };

3) в существенной игре с более чем одним игроком множество дележей бесконечно:

((1) + 1 , (2) + 2 , ... , (n) +n),

где:

i 0 ( i N ) , (N) -- 0

Кооперативная игра с множеством игроков N и характеристической функцией называется стратегически эквивалентной игрой с тем же множеством игроков и характеристической функцией 1 , если найдутся такие к 0 и произвольные вещественные Ci ( iN ), что для любой коалиции К N имеет место равенство:

1(K) = k (K) +

Смысл определения стратегической эквивалентности кооперативных игр (с.э.к.и.) состоит в том что характеристические функции с.э.к.и. отличаются только масштабом измерения выигрышей k и начальным капиталом Ci. Стратегическая эквивалентность кооперативных игр с характеристическими функциями и 1 обозначается так 1. Часто вместо стратегической эквивалентности кооперативных игр говорят о стратегической эквивалентности их характеристических функций .

Справедливы следующие свойства для стратегических эквивалентных игр:

1. Рефлексивность, т.е. каждая характеристическая функция эквивалентна себе .

2. Симметрия, т.е. если 1, то 1.

3. Транзитивность, т.е. если 1 и 12, то 2.

Из свойств рефлексивности, симметрии и транзитивности вытекает, что множество всех характеристических функций единственным образом распадается на попарно непересекающиеся классы, которые называются классами стратегической эквивалентности.

Отношение стратегической эквивалентности игр и их характеристических функций переносится на отдельные дележи: пусть 1, т.е. выполняется (5), и x = (x1, ..., xn) дележи в условиях характеристической функции ; рассмотрим вектор x1 = (, ..., ), где = k xi+Ci; для него выполняется:

= k xi + Ci k ( i ) + Сi = 1(i);

т.е. выполняется условие индивидуальной рациональности, и:

== k+= k (N) += 1(N),

т.е. выполняется условие коллективной рациональности. Поэтому вектор является дележом в условиях 1. Говорят, что делёж x1 соответствует дележу x при стратегической эквивалентности 1.

Кооперативная игра называется нулевой, если все значения её характеристической функции равны нулю. Содержательное значение нулевой игры состоит в том, что в ней игроки не имеют никакой заинтересованности .

Всякая несущественная игра стратегически эквивалентна нулевой .

Определение. Кооперативная игра с характеристической функцией имеет (0,1)-редуцированную форму, если выполняются соотношения:

(i) = 0 (i N),

(N) = 1.

Теорема. Каждая существенная кооперативная игра стратегически эквивалентна одной и только одной игре в (0,1)-редуцированной форме.

Сформулированная теорема показывает, что мы можем выбрать игру в (0,1)-редуцированной форме для представления любого класса эквивалентности игр. Удобство этого выбора состоит в том, что в такой форме значение (K) непосредственно демонстрирует нам силу коалиции S (т.е. ту дополнительную прибыль, которую получают члены коалиции, образовав её), а все дележи являются вероятностными векторами.

В игре в (0,1)-редуцированной форме дележём является любой вектор x = (x1, ..., xn), для которого:

xi 0 (i N) = 1.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и основные свойства вложимой системы, необходимые условия вложимости и методы решения системы. Нахождение первого интеграла дифференциальной системы и условия его существования. Применение теоремы об эквивалентности дифференциальных систем.

    курсовая работа [97,7 K], добавлен 21.08.2009

  • Игры, повторяемые многократно, их отличительные свойства и этапы. Смешанные стратегии, условия и возможности их использования на практике. Аналитический метод решения игры типа 2 x 2. Основные теоремы для прямоугольных игр. Алгебраические решения.

    презентация [893,5 K], добавлен 23.10.2013

  • Эквивалентность, ее формальные свойства и операции над отношениями. Доказательство основных теорем, лемм. Отношения эквивалентности на числовой прямой. Характерные свойства толерантности. Применение эквивалентности и толерантности в сферах различных наук.

    курсовая работа [496,5 K], добавлен 20.09.2009

  • Характерные особенности логарифмов, их свойства. Методика определения логарифма числа по основанию a. Основные свойства логарифмической функции. Множество всех действительных чисел R. Анализ функций возрастания и убывания на всей области определения.

    презентация [796,3 K], добавлен 06.02.2012

  • Основные определения теории биматричных игр. Пример биматричной игры "Студент-Преподаватель". Смешанные стратегии в биматричных играх. Поиск "равновесной ситуации". 2x2 биматричные игры и формулы для случая, когда у каждого игрока имеется две стратегии.

    реферат [84,2 K], добавлен 13.02.2011

  • Вероятность совместного выполнения двух неравенств в системе двух случайных величин. Свойства функции распределения. Определение плотности вероятности системы через производную от соответствующей функции распределения. Условия закона распределения.

    презентация [57,9 K], добавлен 01.11.2013

  • Область определения функции, которая содержит множество возможных значений. Нахождение закона распределения и характеристик функции случайной величины, если известен закон распределения ее аргумента. Примеры определения дискретных случайных величин.

    презентация [68,7 K], добавлен 01.11.2013

  • Составление платежной матрицы, поиск нижней и верхней чисты цены игры, максиминной и минимаксной стратегии игроков. Упрощение платежной матрицы. Решение матричной игры с помощью сведения к задаче линейного программирования и надстройки "Поиск решения".

    контрольная работа [1010,3 K], добавлен 10.11.2014

  • Первая краевая задача и граничное условие 1-го рода. Задачи с однородными граничными условиями. Задача с главными неоднородными условиями и ее вариационная постановка. Понятие обобщенного решения. Основные условия сопряжения и условия согласования.

    презентация [71,8 K], добавлен 30.10.2013

  • Способы задавания функции: табличный, графический и аналитический. Область определения и область значений функции, промежутки ее знакопостоянства. Свойства постоянной функции. Множества значений функции y=arctgx. Основные свойства функции y=sinx.

    реферат [799,4 K], добавлен 22.06.2019

  • Применение метода интервалов для решения неравенств. Формула перехода от простейшего логарифмического неравенства к двойному. Формула решения тригонометрического уравнения. Нахождение множества всех первообразных функции f(x) на области определения.

    контрольная работа [11,3 K], добавлен 03.06.2010

  • Критерии выбросов в случае нормального распределения, их асимптотические свойства и эмпирическая мощность. Исследование распределения статистик по критериям Колмогорова и Смирнова. Реализация критериев определения выбросов в статистическом пакете R.

    курсовая работа [521,9 K], добавлен 10.01.2016

  • Плотность распределения непрерывной случайной величины. Характеристика особенностей равномерного и нормального распределения. Вероятность попадания случайной величины в интервал. Свойства функции распределения. Общее понятие о регрессионном анализе.

    контрольная работа [318,9 K], добавлен 26.04.2013

  • Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.

    реферат [273,3 K], добавлен 29.06.2015

  • Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.

    курсовая работа [124,0 K], добавлен 11.12.2002

  • Понятие числовых функций с областью определения, аргумент и области их значений, свойства и графическое выражение. Определение четных и нечетных функций, периодичность тригонометрических функций. Свойства, используемые при построении их графиков.

    презентация [22,9 K], добавлен 13.12.2011

  • Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.

    презентация [131,8 K], добавлен 01.11.2013

  • Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.

    курсовая работа [485,6 K], добавлен 20.12.2011

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Определение матричных игр в чистых стратегиях. Смешанные стратегии и их свойства. Решения игр матричным методом. Метод последовательного приближения цены игры. Отыскание седлового элемента. Антагонистические игры как первый класс математических моделей.

    контрольная работа [855,7 K], добавлен 01.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.