Григорий Яковлевич Перельман

Рассмотрение научного вклада Григория Перельмана в математику Советского Союза. Топология многообразий, исследование свойств поверхностей. Новаторская работа Перельмана, посвящённая решению одного из частных случаев гипотезы геометризации Тёрстона.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 02.03.2016
Размер файла 121,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Григорий Яковлевич Перельман

«Икона эпохи» -- российский математик Григорий Перельман. О нём известно то, что он отказался от миллиона долларов, доказав Гипотезу Пуанкаре, о которой, в свою очередь, известно то, что она крайне сложна для понимания. Причём последовательность здесь именно такая -- факт отказа от денег взволновал почтенную публику гораздо больше «какой-то абстрактной математической выкладки». Теперь шумиха вокруг этого решения улеглась. Кем является Григорий Перельман для математики и чем является математика для него.

Советский Союз имел выдающуюся математическую традицию, поэтому о детстве Перельмана нельзя рассказывать, не упомянув о феномене советских математических школ. В них талантливых детей готовили под руководством лучших наставников; такая среда служила плодородной почвой для будущих выдающихся достижений.

Григорий Яковлевич Перельман родился 13 июня 1966 года в Ленинграде. Его отец был инженером-электриком, в 1993 году эмигрировал в Израиль. Мать осталась в Санкт-Петербурге, работала учителем математики в ПТУ.

Перельман рос в интеллигентной семье и к математике интерес проявлял с детства.

Однако попав в математический кружок, он не сразу стал лидером. Первые неудачи подстегнули его работать усерднее и повлияли на его характер -- неуступчивый и упрямый. Эти качества и помогли учёному решить главную задачу своей жизни.

Вслед за золотой медалью на Международной математической олимпиаде в Будапеште в 1982 году и блестящим окончанием школы (для золотой медали не хватило сданных норм ГТО) последовал матмех СПбГУ, а позже и аспирантура, где Перельман также учился исключительно на «отлично». Когда Советский Союз прекратил своё существование, учёный столкнулся с действительностью: наука переживала тяжелейший кризис.

Неожиданно состоялась стажировка в США, где молодой учёный впервые встретил Ричарда Гамильтона. Американский математик достиг серьёзного прогресса в решении знаменитой проблемы Пуанкаре. Более того, он даже наметил план, следуя которому к этому решению можно было прийти. Перельману удалось пообщаться с ним, и Гамильтон на него произвёл неизгладимое впечатление: открыт и не жалел сил на объяснения.

Несмотря на предложения остаться, по окончании стажировки Перельман вернулся в Россию, в родную квартиру в питерской девятиэтажке в Купчино, и начал работать в Математическом институте им. Стеклова. В свободное время он размышлял над Гипотезой Пуанкаре и идеями, о которых ему рассказал Гамильтон. В это время у американца, судя по публикациям, не получалось продвинуться в своих рассуждениях дальше. Советское же образование дало Перельману возможность посмотреть на проблему с другой стороны, используя собственный подход. На письма Гамильтон больше не отвечал, и это стало «зелёным светом» для Перельмана: он начал работать над решением Гипотезы. НА РЕШЕНИЕ ЭТОЙ ЗАДАЧИ У ПЕРЕЛЬМАНА УШЛО СЕМЬ ЛЕТ. Условностей он не признавал и отправлять свои работы в научные журналы для рецензии (обычная практика среди учёных) не стал. В ноябре 2002 года Перельман опубликовал на arXiv.org первую часть своих выкладок, за которой последовали ещё две. В них в предельно сжатой форме была решена задача ещё более общая, чем Гипотеза Пуанкаре -- это Гипотеза геометризации Тёрстона, из которой первая была простым следствием. Впрочем, научное сообщество приняло эти работы настороженно. Смущала краткость решения и сложность тех выкладок, которые представил Перельман.

После публикации решения Перельман снова отправился в США. В течение нескольких месяцев он проводил семинары в разных университетах, рассказывая о своей работе и терпеливо отвечая на все вопросы. Однако главной целью его поездки была встреча с Гамильтоном. Пообщаться во второй раз с американским учёным не получилось, зато Перельман снова получил приглашение остаться. Из Гарварда ему пришло письмо с просьбой выслать им своё резюме, на что он раздражённо ответил: «Если они знают мои работы, им не нужно моё CV. Если они нуждаются в моём CV, они не знают мои работы».

СЛЕДУЮЩИЕ НЕСКОЛЬКО ЛЕТ БЫЛИ ОМРАЧЕНЫ ПОПЫТКОЙ КИТАЙСКИХ МАТЕМАТИКОВ ПРИСВОИТЬ ОТКРЫТИЕ (их интересы курировал профессор Яу, гениальный математик, один из создателей математического аппарата Теории Струн), невыносимо долгим ожиданием проверки работы, которой занимались три группы учёных, и шумихой в прессе.

Все это произошло в разрез с принципами Перельмана. Математика привлекала его категорической честностью и однозначностью, что заложено в основу данной науки. Однако интриги коллег, озабоченных признанием и деньгами, пошатнули веру учёного в математическое сообщество, и он решил больше не заниматься математикой.

И хотя вклад Перельмана в итоге был оценён по достоинству, а претензии Яу были проигнорированы, математик не вернулся в науку. Ни медаль Филдса (аналог Нобелевской премии для математиков), ни «Премию тысячелетия» (миллион долларов) он не принял. К шумихе в прессе Перельман отнёсся крайне скептически и свёл к минимуму контакты с бывшими коллегами. И по сей день он живёт в той же самой квартире в Купчино.

В настоящее время ведет аскетичный образ жизни, игнорирует прессу.

Научный вклад

Григорий Перельман известен работами по теории пространств Александрова, сумел доказать ряд гипотез.

В 2002 году Перельман впервые опубликовал свою новаторскую работу, посвящённую решению одного из частных случаев гипотезы геометризации Уильяма Тёрстона, из которой следует справедливость знаменитой гипотезы Пуанкаре, сформулированной французским математиком, физиком и философом Анри Пуанкаре в 1904 году.

Прежде чем выяснить, в чем состоит гипотеза Пуанкаре, необходимо разобраться, что это за раздел математики - топология, - к которому эта самая гипотеза относится. Топология многообразий занимается свойствами поверхностей, которые не меняются при определенных деформациях. Поясним на классическом примере. Предположим, что перед читателем лежит пончик и стоит пустая чашка. С точки зрения геометрии и здравого смысла - это разные объекты хотя бы потому, что попить кофе из пончика не получится при всем желании.

Однако тополог скажет, что чашка и пончик - это одно и то же. И объяснит это так: вообразим, что чашка и пончик представляют собой полые внутри поверхности, изготовленные из очень эластичного материала (математик бы сказал, что имеется пара компактных двумерных многообразий). Проведем умозрительный эксперимент: сначала раздуем дно чашки, а потом ее ручку, после чего она превратится в тор (именно так математически называется форма пончика).

Разумеется, возникает вопрос: раз поверхности можно мять, то как же их различать? Ведь, например, интуитивно понятно - как ни мни тор, без разрывов и склеек сферу из него не получишь. Тут в игру вступают так называемые инварианты - характеристики поверхности, которые не меняются при деформации, - понятие, необходимое для формулировки гипотезы Пуанкаре.

Здравый смысл подсказывает нам, что тор от сферы отличает дырка. Однако дырка - понятие далеко не математическое, поэтому его надо формализовать. Делается это так - представим, что на поверхности у нас имеется очень тонкая эластичная нить, образующая петлю (саму поверхность в этом умозрительном опыте, в отличие от предыдущего, считаем твердой). Будем двигать петлю, не отрывая ее от поверхности и не разрывая. Если нить можно стянуть до очень маленького кружочка (почти точки), то говорят, что петля стягиваема. В противном случае петля называется нестягиваемой., как примерно выглядит этот процесс можно.

Так вот, легко видеть, что на сфере любая петля стягиваема (как это примерно выглядит, можно посмотреть), а вот для тора это уже не так: на бублике есть целых две петли - одна продета в дырку, а другая обходит дырку "по периметру", - которые нельзя стянуть.

На трехмерных многообразиях можно рассмотреть такие же петли, какие мы брали на обычных поверхностях. Так вот, гипотеза Пуанкаре утверждает: "Если фундаментальная группа трехмерного многообразия тривиальна, то оно гомеоморфно сфере". Непонятное словосочетание "гомеоморфно сфере" в переводе на неформальный язык означает, что поверхность можно продеформировать в сферу.

В 1887 году Пуанкаре представил работу на математический конкурс, посвященный 60-летию короля Швеции Оскара II. В ней обнаружилась ошибка, которая привела к появлению теории хаоса.

Описанный учёным метод изучения потока Риччи получил название теории Гамильтона -- Перельмана.

Признание и оценки.

В 2006 году Григорию Перельману за решение гипотезы Пуанкаре присуждена международная премия «Медаль Филдса», однако он отказался от нее. Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре -- «это центральная проблема математики и физики, попытка понятькакой формы может быть Вселенная, к ней очень трудно подобраться».

В 2006 году журнал Science назвал доказательство теоремы Пуанкаре научным «прорывом года» («Breakthrough of the Year»).

Это первая работа по математике, заслужившая такое звание.

В 2006 году Сильвия Назар написала статью «Manifold Destiny»(англ.), которая рассказывает о Григории Перельмане и математическом сообществе и содержит редкое интервью с ним самим.

В 2007 году британская газета The Daily Telegraph опубликовала список 100 ныне живущих гениев, в котором Григорий Перельман занимает 9 место. Кроме Перельмана в этот список попали всего лишь 2 россиянина -- Гарри Каспаров (25-е место) и Михаил Калашников (83-е место).

18 марта 2010 года Математический институт Клэя объявил о присуждении Григорию Перельману премии в размере 1 млн долларов США за доказательство гипотезы Пуанкаре. Это первое в истории присуждение премии за решение одной из Проблем тысячелетия.

О судьбе Перельмана повествует биографическая книга Маши Гессен «Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century»,основанная на многочисленных интервью с его учителями, одноклассниками, сослуживцами.

Выдержки из книги:

- Чужаками считаются не те, кто нарушает этические стандарты в науке. Люди, подобные мне, -- вот кто оказывается в изоляции.

- Если они знают мои работы, им не нужно мое C.V. Если они нуждаются в моем C.V., они не знают мои работы

- « -- А почему, -- поинтересовалась я, -- король ... недостоин повесить медаль на шею Перельмана?

-- А кто это такие -- короли? -- Громов вышел из себя. -- Такое же дерьмо, как и коммунисты! Почему король должен вручать премию математику? Кто это -- король? Никто. С точки зрения математика он -- ничтожество, как и Мао. Но только Мао пришел к власти как бандит, а второй получил ее от отца. Никакой разницы.

В отличие от этих людей, объяснил мне Громов, Перельман сделал нечто стоящее.»

К сожалению, связаться с самим ученым практически не у кого нет возможности: он ведет крайне замкнутый образ жизни и не общается с прессой. Известно, что в последние годы ученый фактически жил на пенсию своей матери. Один из питерских вузов предлагал ему работу преподавателя, с зарплатой в 17 тысяч рублей, но ученого не устроили ни деньги, ни условия работы. А несколько месяцев назад некая шведская частная фирма, которая занимается научными разработками, предложила Григорию Перельману высокооплачиваемую работу. По некоторым данным, он занимается нано технологиями. перельман математика топология геометризация

Кинокомпания «Президент-фильм» с согласия Перельмана планирует снять о нем художественную ленту «Формула Вселенной». Математик и пошёл-то на контакт ради этого фильма, который будет не о нём, а о сотрудничестве и противоборстве трех основных мировых математических школ: российской, китайской и американской, наиболее продвинувшихся по стезе изучения и управления Вселенной. На вопрос о миллионе, который так волновал всех удивлённых и любопытных, Перельман ответил: «Я знаю, как управлять Вселенной. И скажите - зачем же мне бежать за миллионом?»

Учёный рассказал и про то, почему он не общается с журналистами. Причина в том, что их волнует не наука, а личная жизнь - стрижка ногтей и миллион. Его обижает, когда в прессе его называют Гришей, такую фамильярность математик считает неуважением к себе.

В научном сообществе бытует мнение, что математики умнее всех. Умнее всех они потому, что имеют дело с предельно общими и абстрактными вещами. Категории этой науки не подразумевают разных трактовок и толкований, и поэтому те, кто математикой живёт, переносят эти принципы и на взаимоотношения людей. Григорий Перельман именно такой человек. А реакция общества на его решения, в которой преобладало недоумение относительно его отказа от премии, только подчёркивает ту пропасть, что разделяет его и нас. Получается, что хоть Григорий Перельман и не думал учить нас, -- этот урок он всё-таки нам преподал.

Размещено на Allbest.ru

...

Подобные документы

  • Введение в алгебраическую геометрию. Определения аффинных многообразий: фиксированное алгебраически замкнутое поле; аффинное пространство, топология Зорисского на аффинной прямой; нётерово топологическое пространство. Понятия проективных многообразий.

    контрольная работа [204,1 K], добавлен 15.05.2012

  • Способы задания прямой на плоскости. Уравнение с угловым коэффициентом. Рассмотрение частных случаев. Уравнение прямой, проходящей через заданную точку в заданном направлении. Построение графика прямой, проходящей через две точки. Рассмотрение примера.

    презентация [104,9 K], добавлен 21.09.2013

  • Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

    курсовая работа [132,8 K], добавлен 28.06.2009

  • Теория полуколец находит своё применение в теории автоматов, компьютерной алгебре и других разделах математики. Построение классического полукольца частных. Построение полного полукольца частных. Связь между полным и классическим полукольцами частных.

    реферат [227,2 K], добавлен 27.05.2008

  • Изучение биографии и деятельности Франсуа Виета и его вклада в математику. Определение понятия квадратного уравнения. Сущность уравнений частного порядка и их решение рациональным способом. Анализ теоремы Виета как инструмента для решения уравнений.

    презентация [320,7 K], добавлен 31.05.2019

  • Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.

    дипломная работа [1,4 M], добавлен 06.06.2011

  • Знакомство с основными требованиями к вычислительным методам. Рассмотрение особенностей математического моделирования. Вычислительный эксперимент как метод исследования сложных проблем, основанный на построении математических моделей, анализ этапов.

    презентация [12,6 K], добавлен 30.10.2013

  • Определение свойств чисел и выражение соотношений между подмножествами одного множества. Арифметический треугольник Паскаля. Алгоритм вычисления биномиальных коэффициентов. Рассмотрение комбинаторных тождеств: правила симметрии и свертки Вандермонда.

    курсовая работа [471,2 K], добавлен 10.10.2011

  • Рассмотрение видов арифметических задач, используемых в работе с дошкольниками. Этапы обучения решению арифметических задач. Изучение структуры, модели записи математического действия. Алгоритм решения задач. Роль данных занятий в общем развитии ребенка.

    презентация [379,7 K], добавлен 19.06.2015

  • Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.

    контрольная работа [90,0 K], добавлен 24.10.2010

  • Диофант и история диофантовых уравнений. О числе решений линейных диофантовых уравнений (ЛДУ). Нахождение решений для некоторых частных случаев ЛДУ. ЛДУ c одной неизвестной и с двумя неизвестными. Произвольные ЛДУ.

    курсовая работа [108,7 K], добавлен 13.06.2007

  • Формулировка гипотезы Билля и методика ее краткого доказательства. Анализ составляющих гипотезу алгебраических выражений. Использование метода замены переменных при доказательстве гипотезы Билля, не имеющей решения при целых положительных числах.

    творческая работа [20,7 K], добавлен 07.06.2009

  • Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.

    методичка [2,0 M], добавлен 18.02.2015

  • Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.

    реферат [2,0 M], добавлен 19.05.2014

  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат [5,4 M], добавлен 10.01.2009

  • Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.

    курсовая работа [612,2 K], добавлен 01.06.2014

  • Топология как сравнительно молодая математическая наука, предмет и методы ее изучения, основные этапы становления и развития. Области топологии и понятие топологического пространства. Проблемы науки и пути их разрешения, основные понятия и теоремы.

    реферат [20,1 K], добавлен 09.09.2009

  • Ф.В. Бессель как немецкий математик и астроном XIX века. Описание уравнения Бесселя, его свойства и функции, характеристика частных случаев. Ортогональность функций Бесселя и их корни. Направления применения теории данных функций к анализу скин-эффекта.

    курсовая работа [1,1 M], добавлен 21.08.2012

  • Биография и творческий путь Гнеденко - советского математика, специалиста по математической статистике. Выявление его вклада в развитие теории вероятностей. Описание статистических методов управления качеством. Суммирование независимых случайных величин.

    курсовая работа [27,5 K], добавлен 10.01.2015

  • Суть понятия "критерии согласия". Критерии согласия Колмогорова и омега-квадрат в случае простой гипотезы. Критерии согласия Пирсона для простой гипотезы, Фишера для сложной гипотезы. Теоретическое обоснование и практическое применение критерия согласия.

    курсовая работа [3,6 M], добавлен 18.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.