Примеры функциональных зависимостей

Выражение функциональных зависимостей в виде уравнений, объединяющих данные величины или явления. Графическая иллюстрация золотого правила механики. Графическое изображение современного информационного бума. Примеры математических портретов пословиц.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 13.03.2016
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Примеры функциональных зависимостей

Функциональная зависимость - форма устойчивой взаимосвязи между объективными явлениями или отражающими их величинами, при которой изменение одних явлений вызывает определенное количественное изменение других. Объективно Ф. з. проявляется в виде законов и отношений, обладающих точной количественной определенностью. Они могут быть в принципе выражены в виде уравнений, объединяющих данные величины или явления как функцию и аргумент. Ф. з. может характеризовать связь:

1) между свойствами и состояниями материальных объектов и явлений;

2) между самими объектами, явлениями или же материальными системами в рамках целостной системы более высокого порядка;

3) между объективными количественными законами, находящимися в отношении субординации, в зависимости от их общности и сферы действия;

4) между абстрактными математическими величинами множествами, функциями или структурами, безотносительно к тому, что они выражают.

Ключ к небольшой математической проблеме

Отметим, что не всякую функциональную зависимость удается выразить краткой формулой, мы не случайно в качестве примера предоставляем вам, ключ от дверного замка: сейчас он в буквальном смысле слова послужит ключом к небольшой математической проблеме, к которой нас подводит беседа о функциях. Знаете ли вы, как таким ключом открывается дверной замок? Что происходит внутри этого слесарно-механического устройства, когда вы вставляете ключ в замочную скважину и делаете положенное число оборотов?

Чтобы замок открылся, нужно провернуть барабан, в котором сделана скважина. Но этому препятствуют штифты, стоящие тесным строем внутри скважины, скользящие вверх-вниз. Каждый из штифтов нужно поднять на такую высоту, чтобы их верхние торцы оказались вровень с поверхностью барабана. Если они выступят за нее, то войдут в прорезь обоймы, расположенную точно над заочной скважиной; если не достигнут поверхности барабана, то из прорези обоймы находящиеся там штифты вдвинутся в замочную скважину. И в том и в другом случае вращение барабана будет застопорено.

Штифты в замочной скважине поднимает ключ, вдвигаемый в нее. При этом высота каждого штифта, будучи сложена с высотой профиля ключа в соответствующей точке, должна дать в сумме диаметр барабана. Только тогда он провернется.

Ну а причем здесь функция? Да притом, что, с точки зрения математика, вся эта механика есть не что иное, как операция сложения двух функций. Одна из них -- это профиль ключа. Другая -- линия, очерчивающая верхние торцы штифтов, когда замок заперт.

Операция сложения функций состоит в том, что в каждой точке из общей области их определения к значению одной функции прибавляется значение другой.

Золотое правило механики

Вся богатейшая семья механизмов, окружающих современного человека, начиналась когда-то с семи простых машин. Древние знали рычаг, блок, клин, ворот, винт, наклонную плоскость и зубчатые колеса. Эти нехитрые по теперешним представлениям устройства умножали силу человека. Но, во сколько раз выиграешь в силе -- во столько же раз проиграешь в расстоянии. Так гласит золотое правило механики, заключающее в себе теорию семи простых машин.

График, приведенный на этой странице, есть наглядное выражение знаменитого правила. По горизонтальной оси отложена сила, с которой, например, нужно давить на плечо рычага, чтобы поднять заданный груз на заданную высоту. По вертикальной оси -- расстояние, которое пройдет при этом точка приложения силы. Линия, выражающая такую функциональную зависимость, называется гиперболой.

Закон обратной пропорциональности глядит на нас и со шкалы радиоприемника. Вы крутите ручку настройки, и стрелка движется вдоль шкалы, на которой два ряда чисел -- метры и мегагерцы, длина волн и их частота. Длина волн растет, частота падает. Но присмотритесь: при любом сдвиге стрелки во сколько раз увеличилась длина волны, во столько же раз упала частота.

График гиперболы можно увидеть на лабораторном столе физика, демонстрирующего явления капиллярности. В штативе несколько тонких стеклянных трубочек, расположенных в порядке возрастания диаметров. Известно, что в тонком канале смачивающая жидкость поднимается тем выше, чем меньше его диаметр. Поэтому в самом узком канале жидкость поднялась выше всего, в другом канале, диаметр которого в два раза больше, -- в два раза ниже, в третьем, что толще первого в три раза, -- в три раза ниже и так далее.

Информационный бум

Сейчас много говорят об информационном буме. Поток информации захлестывает: утверждают, что ее количество удваивается каждые десять лет. Изобразим этот процесс наглядно, в виде графика некоторой функции.

Примем объем информации в некоторый год за единицу. Поскольку эта величина послужит нам началом дальнейших построений, отложим ее над началом координат, в которых будет строиться график, по вертикальной оси. Отрезок, вдвое больший, восставим над единичой отметкой горизонтальной оси, считая, что эта отметка соответствует первому десятку лет.

Еще вдвое больший отрезок восставим над точкой «два», соответствующей второму десятку, еще вдвое больший -- над точкой «три». Декада за декадой-- избранные нами значения аргумента выстроятся по горизонтальной оси в порядке равномерного нарастания, по закону арифметической прогрессии: один, два, три, четыре... Значения функции отложатся над ними, возрастая каждый раз вдвое, -- по закону геометрической прогрессии: два, четыре, восемь, шестнадцать...

Звездный график

Сколько звезд на небе? Одним из первых, кто попытался точно ответить на этот вопрос, был древнегреческий астроном Гиппарх. При его жизни в созвездии Скорпиона вспыхнула новая звезда. Гиппарх был потрясен: звезды смертны, они, как люди, рождаются и умирают. И чтобы будущие исследователи могли следить за возникновением и угасанием звезд, Гиппарх составил свой звездный каталог. Он насчитал около тысячи звезд и разбил их по видимому блеску на шесть групп. Самые яркие Гиппарх назвал звездами первой величины, заметно менее яркие -- второй, еще столь же менее яркие -- третьей и так далее в порядке равномерного убывания видимого блеска -- до звезд, едва видимых невооруженным глазом, которым была присвоена шестая величина.

Когда ученые получили в свое распоряжение чувствительные приборы для световых измерений, стало возможным точно определять блеск звезд. Стало возможным сравнить, насколько соответствует данным таких измерений традиционное распределение звезд по видимому блеску, произведенное на глаз.Оценки того и другого рода сведем на одном графике. От каждой из шести групп, на которые звезды распределил Гиппарх, возьмем по одному типичному представителю. По вертикальной оси будем откладывать блеск звезды в единицах Гиппарха, то есть ее звездную величину, по горизонтальной -- показания приборов. С каждым шагом по шкале звездных величин прибор регистрирует возрастание блеска не на одну и ту же величину, как могло бы показаться, а примерно в два с половиной раза. Образно говоря, глаз сравнивает источники света по блеску, задаваясь вопросом «во сколько раз?», а не вопросом «на сколько?». Мы отмечаем не абсолютный, а относительный прирост блеска. И когда нам кажется, что он возрастает или убывает равномерно, в действительности мы шагаем по его шкале все более размашистыми шагами, покрывая при этом поистине гигантский диапазон: в миллион миллионов раз различаются по блеску источники света, самый слабый и самый мощный, воспринимаемые человеческим глазом.

Именно в силу описанной физиологической особенности звезды, ярко горящие на ночном небе, не видны днем, тонут в ослепительном блеске солнца, рассеянном по небосводу. И там и здесь сияние звезд дает одну и ту же добавку к свету фона. Однако в первом случае (ночью) эта добавка велика по сравнению с мерцанием неба, во втором же (днем) составляет весьма незначительную долю от солнечного блеска (менее чем миллиардную даже для самых ярких звезд). Оттого же и голос солиста, когда его пение подхватывает хор, тонет в многоголосом звучании...

Математические портреты пословиц

Современная математика знает множество функций, и у каждой свой неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на Земле. Однако при всей непохожести одного человека на другого у каждого есть руки и голова, уши и рот. Точно так же облик каждой функции можно представить сложенным из набора характерных деталей. В них проявляются основные свойства функций.

Функции -- это математические портреты устойчивых закономерностей, познаваемых человеком. Чтобы проиллюстрировать характерные свойства функций, нам показалось естественным обратиться к пословицам. Ведь пословицы -- это тоже отражение устойчивых закономерностей, выверенное многовековым опытом народа.

«Выше меры конь не скачет» Если представить траекторию скачущего коня как график некоторой функции, то высота скачков в полном соответствии с пословицей будет ограничена сверху некоторой «мерой». Это будет знакомый график функции синуса.

«Пересев хуже недосева» Урожай лишь до некоторой поры растет вместе с плотностью посева, дальше он снижается, потому что при чрезмерной густоте ростки начинают глушить друг друга. Эта закономерность станет особенно наглядной, если изобразить ее графиком, где урожай представлен как функция плотности посева. Урожай максимален, когда поле засеяно в меру. Максимум-- это наибольшее значение функции по сравнению с ее значениями во всех соседних точках. Это как бы вершина горы, с которой все дороги ведут только вниз, куда ни шагни.

«Не круто начинай, круто кончай» и «Горяч на почине, да скоро остыл»

функциональный зависимость математический уравнение

Обе функции, зависящие от времени, возрастающие. Но, как видно, расти можно по-разному. Наклон одной кривой постоянно увеличивается. Рост функции усиливается с ростом аргумента. Такое свойство функции называется вогнутостью.

Наклон другой кривой неизменно уменьшается. Рост функции слабеет с ростом аргумента. Такое свойство функции называется выпуклостью.

Размещено на Allbest.ru

...

Подобные документы

  • Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.

    курсовая работа [86,3 K], добавлен 01.10.2011

  • Вычисление приближенных величин и погрешностей. Решение алгебраических и трансцендентных уравнений, интерполяция функций и методы численного интегрирования. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей.

    курсовая работа [378,5 K], добавлен 08.01.2013

  • Аппроксимация экспериментальных зависимостей методом наименьших квадратов. Правило Крамера. Графическое отображение точек экспериментальных данных. Аномалии и допустимые значения исходных данных. Листинг программы на С++. Результаты выполнения задания.

    курсовая работа [166,7 K], добавлен 03.02.2011

  • Схематическое изображение и краткое описание заданной гидравлической системы, выражение работы данной системы с помощью уравнений. Написание уравнения системы виде входа-выхода, решение задачи в символьном виде. Разложение уравнения в ряд Тейлора.

    лабораторная работа [92,4 K], добавлен 11.03.2012

  • Функциональное уравнение как уравнение, в котором неизвестными являются функции (одна или несколько). Общая характеристика функциональных уравнений, определяющих показательную, логарифмическую и степенную функцию. Свойства их нетривиальных решений.

    контрольная работа [1011,9 K], добавлен 07.10.2011

  • Сущность и основные понятия теории графов, примеры и сферы ее использования. Формирование следствий из данных теорий и примеры их приложений. Методы разрешения задачи о кратчайшем пути, о нахождении максимального потока. Графическое изображение задачи.

    курсовая работа [577,1 K], добавлен 14.11.2009

  • Виды и методы решения функциональных уравнений, изучаемых в школьном курсе математики, с применением теории матриц, элементов математического анализа и сведения функционального уравнения к известному выражению с помощью замены переменной и функции.

    курсовая работа [472,1 K], добавлен 07.02.2016

  • Интерполяция (частный случай аппроксимации). Аппроксимация функцией. Метод наименьших квадратов. Из курса математики известны 3 способа задания функциональных зависимостей: аналитический, графический, табличный.

    реферат [70,4 K], добавлен 26.05.2006

  • Содержание понятия, исследование свойств и применение различных методов решения функциональных уравнений. Порядок решения функциональных уравнений Коши на множестве Q рациональных чисел, на оси R, полуоси R. Измеримые функции и гиперболические косинусы.

    дипломная работа [211,8 K], добавлен 01.10.2011

  • Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.

    презентация [226,6 K], добавлен 08.12.2011

  • Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.

    реферат [3,5 M], добавлен 09.05.2009

  • Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.

    контрольная работа [239,4 K], добавлен 19.06.2009

  • Методы численного интегрирования, основанные на том, что интеграл представляется в виде предела суммы площадей. Геометрическое представление метода Гаусса с двумя ординатами. Численные примеры и сравнение методов. Решение систем алгебраических уравнений.

    курсовая работа [413,4 K], добавлен 11.06.2014

  • Систему дифференциальных уравнений Колмогорова. Решение системы алгебраических уравнений для финальных вероятностей состояний. Графики зависимостей. Тип системы массового обслуживания по характеру входящего потока и распределению времени обслуживания.

    контрольная работа [187,7 K], добавлен 01.03.2016

  • Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.

    презентация [7,0 M], добавлен 10.11.2014

  • Методы снижения погрешности аппроксимирующих зависимостей на примере определения влажности нефти прибором "Ультрафлоу". Синтезирование математической модели для расчета влажности нефти на основе показаний датчиков доплеровского сдвига частоты и влажности.

    статья [33,7 K], добавлен 15.05.2014

  • Понятие и типы математических моделей, критерии их классификации. Примеры использования дифференциальных уравнений при моделировании реальных процессов: рекламная компания, истечение жидкости, водяные часы, невесомость, прогиб балок, кривая погони.

    курсовая работа [410,0 K], добавлен 27.04.2014

  • Механизм и основные этапы нахождения необходимых параметров методом наименьших квадратов. Графическое сравнение линейной и квадратичной зависимостей. Проверка гипотезы о значимости выборочного коэффициента корреляции при заданном уровне значимости.

    курсовая работа [782,6 K], добавлен 19.05.2014

  • Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.

    реферат [7,5 M], добавлен 18.12.2012

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.