Математические методы в социально-гуманитарных науках
Проблема использования математики в разных областях знания. Изучение истории возникновения арифметики и геометрии. Применение математических методов и моделей в физике и социально-гуманитарных науках, исторических исследованиях. Опыт математизации.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 22.03.2016 |
Размер файла | 21,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа
«Математические методы в социально-гуманитарных науках»
Выполнил:
Десятников Борис Борисович
Санкт-Петербург 2015
Математические методы в социально-гуманитарных науках: закономерности, специфика и этапы применения.
Процесс внедрения математических методов в исследовательскую практику социально-гуманитарных наук (получивший название математизации социального знания) является многоаспектным, содержит в себе черты как интеграции, так и дифференциации современной науки. Применение математических методов в исторических исследованиях обладает определенной спецификой по сравнению, например, с аналогичным процессом в социологических или в экономических исследованиях. В то же время этот процесс имеет определенные общие черты с процессом математизации естественных наук. Рассмотрим кратко некоторые методологические проблемы, связанные с применением математических методов в социально-гуманитарных науках и имеющие существенное значение для нашего дальнейшего обсуждения вопросов построения математических моделей исторических процессов и явлений.
Наиболее общей в методологическом плане является проблема объяснения принципиальной возможности использования математики в различных областях знания. Обсуждая эту проблему, известный математик, акад. Б.В. Гнеденко пишет о "мучительном вопросе, который ставили перед собой многие поколения математиков и философов: каким образом наука, казалось бы, не имеющая прямых связей с физикой, биологией, экономикой, применяется с успехом ко всем этим областям знания?". Этот вопрос тем более уместен, что понятия математики и выводы из них, которые вводятся и строятся без явных видимых связей с проблемами, понятиями и задачами различных дисциплин, все чаще находят в них применение и способствуют более точному познанию.
Главными "заказчиками" для развития математики сегодня являются, наряду с естественнонаучными, и гуманитарно-социальные дисциплины, выдвигающие задачи, которые слабо формализуются в рамках традиционной математики. Это существенно новый этап в развитии математики, если учесть, что на протяжении истории человечества действительный мир три раза давал мощные импульсы развитию математики. Первый раз - в древние времена, когда потребности счета и землепользования вызвали к жизни арифметику и геометрию. Второй сильный импульс математика получила в XVI-XVII вв., когда задачи механики и физики привели к формированию дифференциального и интегрального исчислений. Третий мощный импульс со стороны реального мира математика получает в наши дни: это науки о человеке, "большие системы" разных видов (в том числе и социальные), проблемы информации. "Можно не сомневаться, - отмечает Г.Е. Шилов, - что "структурализация" новых областей математики, формирующихся под влиянием этого импульса, потребует у математиков многих лет и десятилетий напряженной работы".
В этой связи представляет интерес и точка зрения выдающегося математика современности Дж. фон Неймана: "Решающая фаза применения математики к физике - создание Ньютоном науки механики - едва ли могла быть отделена от открытия дифференциального исчисления. ...Важность социальных явлений, богатство и множественность их проявлений по меньшей мере равны физическим. Следовательно, надо ожидать - или опасаться, что потребуются математические открытия того же ранга, что дифференциальное исчисление, для того, чтобы произвести решительный переворот в этой области".
Воздействие современного этапа научно-технической революции с ее важной социальной компонентой существенно изменило традиционное представление о математике как о "вычислительной" науке. Одним из главных направлений развития математики сегодня является исследование качественных сторон объектов и процессов. Математика ХХ века - это качественная теория дифференциальных уравнений, топология, математическая логика, теория игр, теория нечетких множеств, теория графов и ряд других разделов, "которые сами с цифрами не оперируют, а изучают соотношения между понятиями и образами".
Важной методологической проблемой математизации социального знания является определение степени универсальности математических методов и моделей, возможности переноса методов, применяемых в одной области науки, в другую. В связи с этим следует, в частности, рассматривать вопрос о том, нужны ли специальные математические методы для исследования в социально-гуманитарных науках, или можно обойтись теми методами, которые возникли в процессе математизации естественных наук.
Основу для рассмотрения данного круга вопросов создает единство методологической структуры социального и естественнонаучного познания, обнаруживаемое в следующих главных пунктах: описание и обобщение фактов; установление логических и формальных связей, дедукция законов; построение идеализированной модели, адаптированной к фактам; объяснение и предсказание явлений.
Науки о природе и обществе осуществляют постоянный обмен методами: социально-гуманитарные науки все шире привлекают математические и экспериментальные методы, естественные науки - индивидуализирующие методы, системный подход и т.д.
Существенно, что использование математических моделей позволяет установить общность процессов, изучаемых различными отраслями знания. Однако, единство мира, общность основных принципов познания природы и общества отнюдь не уменьшают специфику социальных явлений. Так, едва ли смогут найти применение в социально-гуманитарных науках большинство математических моделей, созданных в процессе развития физики и других естественных наук. Это следует из того очевидного методологического положения, что именно специфика, внутренняя природа изучаемого явления или процесса должны определять подход к построению соответствующей математической модели. По этой причине аппарат многих разделов математики не используется в социально-гуманитарных науках. Наибольшее же распространение в этих дисциплинах получили методы математической статистики, основанные на результатах теории вероятностей. Объяснение этой ситуации потребует рассмотрения вопроса о закономерностях и этапах процесса внедрения математических методов в любой отрасли науки.
Опыт математизации научного знания свидетельствует о наличии трех этапов (их еще называют формами математизации) в этом процессе. Первый этап состоит в "численном выражении изучаемой реальности для выявления количественной меры и границ соответствующих качеств"; с этой целью проводится математико-статистическая обработка эмпирических данных, предлагается количественная формулировка качественно установленных фактов и обобщений. Второй этап заключается в разработке математических моделей явлений и процессов в рассматриваемой области науки (это уровень частных теоретических схем); он отражает основную форму математизации научного познания. Третий этап - использование математического аппарата для построения и анализа конкретных научных теорий (объединение частных построений в фундаментальную теоретическую схему, переход от модели к теории), т.е. формализация основных итогов самого научного знания.
В контексте нашего рассмотрения возникает необходимость хотя бы очень кратко затронуть вопрос - как определяется в современной науке понятие "математическая модель"? Как правило, речь идет о системе математических соотношений, описывающих изучаемый процесс или явление; в общем смысле такая модель является множеством символических объектов и отношений между ними. Как отмечает Г.И. Рузавин, "до сих пор в конкретных приложениях математики чаще всего имеют дело с анализом величин и взаимосвязей между ними. Эти взаимосвязи описываются с помощью уравнений и систем уравнений", в силу чего математическая модель обычно рассматривается как система уравнений, в которой конкретные величины заменяются математическими понятиями, постоянными и переменными величинами, функциями. Как правило, для этого применяются дифференциальные, интегральные и алгебраические уравнения. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения, называется математической моделью. Однако, развитие новейших разделов математики, связанных с анализом нечисловых структур, опыт их использования в социально-гуманитарных исследованиях показали, что рамки представлений о языке математических моделей должны быть раздвинуты, и тогда математическую модель можно определить как любую математическую структуру, "в которой ее объекты, а также отношения между объектами могут интерпретироваться различным образом (хотя с практической точки зрения математическая модель, выраженная с помощью уравнений, представляет собой наиболее важный тип модели)". математика арифметика геометрия наука
Здесь уже содержится подход к решению вопроса о том, соответствуют ли результаты, полученные с помощью математических методов в той или иной сфере социального знания, тем эталонам, критериям, которые приняты в "точных" науках? С одной стороны, общественные и естественные науки используют набор критериев научности, основанных на одних и тех же гносеологических принципах. Основные требования к научному методу могут быть сведены к следующему: предметность, фактичность, полнота описания, интерпретируемость, проверяемость, логическая строгость, достоверность и т.д.
С другой стороны, исследовательская деятельность в рамках математического стандарта научности есть по преимуществу познание логически возможного; естественнонаучный стандарт ориентирован на получение результатов, эффективных для практической, предметной деятельности; социально-гуманитарный стандарт научного знания "ориентирован, помимо этого, на получение социально-значимых результатов, согласующихся с целями, основными ценностными установками социально-исторического субъекта". Не претендуя здесь на анализ сложной проблемы соотношения стандартов научности, отметим лишь очевидную несводимость процесса исторического познания к чисто логическим или математическим процедурам. Сопоставление реальных процессов математизации различных областей социального знания выявляет существенные различия в характере этих процессов, происходящие прежде всего из специфики природы знания в тех или иных социальных науках. Представляется, что дискуссии о пределах проникновения математических методов в социально-гуманитарные науки не могут быть плодотворными без выявления типов социального знания.
Второй аспект социального знания, влияющий на процесс его математизации, определяется зрелостью соответствующей научной области, наличием сложившегося концептуального аппарата, позволяющего на качественном уровне установить наиболее важные понятия, гипотезы и законы. "Именно опираясь на такой качественный анализ исследуемых объектов и процессов, можно ввести сравнительные и количественные понятия, выразить найденные обобщения и установленные закономерности на точном языке математики", получив тем самым эффективный инструмент анализа в данной научной области. В этой связи нам представляется справедливой точка зрения акад. Н.Н. Моисеева, который считает, что "принципиально нематематизируемых" дисциплин вообще не существует. Другое дело - степень математизации и этап эволюции научной дисциплины, на котором математизация начинает работать".
Отмеченные факторы и особенности процесса математизации социального знания проявились и в опыте применения математических методов и моделей в исторических исследованиях, обладающих при этом определенной спецификой. Рассмотрим здесь ряд методических и методологических аспектов этого процесса, оказавшихся в последние годы в центре внимания историков, использующих в конкретно-исторических исследованиях методы математического моделирования.
Размещено на Allbest.ru
...Подобные документы
История математизации науки. Основные методы математизации. Пределы и проблемы математизации. Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования.
реферат [46,1 K], добавлен 24.05.2005Математические понятия. Сущность процесса математизации. Эволюция учения о методе в истории философии. Метод и методология науки. "Методологический негативизим" и "методологическая эйфория". Классификация методов научного познания.
реферат [93,9 K], добавлен 05.06.2007Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.
статья [16,2 K], добавлен 05.01.2010Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.
реферат [35,0 K], добавлен 15.05.2007Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.
реферат [27,6 K], добавлен 11.09.2010Сущность вероятностной задачи-схемы независимых испытаний швейцарского профессора математики Я. Бернулли. Пример решения задачи по формуле Бернулли. Применение методов теории вероятностей в различных отраслях естествознания, техники и прикладных науках.
презентация [301,3 K], добавлен 10.03.2011Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат [20,3 K], добавлен 24.11.2009Характеристика понятий "порядок", "хаос" и особенностей их применения в точных науках: математике, физике. Исследование взаимосвязи упорядоченных и хаотических явлений и методы формулировки (содержательно и математически строго) правил относительно них.
реферат [595,3 K], добавлен 29.11.2010Изучение вопросов применения теории множеств, их отношений и свойств и теории графов, а также математических методов конечно-разностных аппроксимаций для описания конструкций РЭА (радиоэлектронной аппаратуры) и моделирования протекающих в них процессов.
реферат [206,9 K], добавлен 26.09.2010Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.
презентация [2,4 M], добавлен 20.09.2015Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.
презентация [1,8 M], добавлен 17.12.2010Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.
курсовая работа [28,9 K], добавлен 12.05.2009Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.
дипломная работа [4,4 M], добавлен 05.03.2011Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.
дипломная работа [1,8 M], добавлен 21.08.2011Понятие отражательной и вращательной осевых симметрий в евклидовой геометрии и в естественных науках. Примеры осевой симметрии - бабочка, снежинка, Эйфелева башня, дворцы, лист крапивы. Зеркальное отражение, радиальная, аксиальная и лучевая симметрии.
презентация [447,3 K], добавлен 17.12.2013Теория игр – раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта. Итеративный метод Брауна-Робинсона. Монотонный итеративный алгоритм решения матричных игр.
дипломная работа [81,0 K], добавлен 08.08.2007Особенности математических моделей и моделирования технического объекта. Применение численных математических методов в моделировании. Методика их применения в системе MathCAD. Описание решения задачи в Mathcad и Scilab, реализация базовой модели.
курсовая работа [378,5 K], добавлен 13.01.2016История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат [38,2 K], добавлен 09.10.2008Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.
дипломная работа [245,5 K], добавлен 13.02.2010Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.
статья [122,0 K], добавлен 11.01.2004