Определённый интеграл

Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

Рубрика Математика
Вид конспект урока
Язык русский
Дата добавления 18.04.2016
Размер файла 64,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Определённый интеграл

Пусть на отрезке [a; b], (всюду ) определена непрерывная ограниченная функция f(x). Произвольным образом разобьем отрезок [a; b] на n отрезков точками . . Полученные отрезки , ,…, будем называть частичными. Длину k-го частичного отрезка , , обозначим . На каждом частичном отрезке выберем произвольную точку , (рис. 1) и вычислим значение функции в этой точке, т. е. .

Размещено на http://www.allbest.ru/

Рис.1

Для каждого k, , найдём произведение и составим сумму:

(1)

Сумма (1) называется интегральной суммой функции f(x) на отрезке [a; b].

Определённым интегралом от функции f(x) в промежутке [a; b] называется предел её интегральной суммы, когда число частичных отрезков неограниченно возрастает, а длина наибольшего из них стремится к нулю:

.

Числа a и b называются соответственно нижним и верхним пределами интегрирования. Функция f(x) называется подынтегральной функцией, f(x)dx - подынтегральным выражением, x - переменной интегрирования, отрезок [a; b] - отрезком интегрирования.

Функция f(x), для которой существует предел интегральной суммы, называется интегрируемой на отрезке.

Классы интегрируемых функций

1) непрерывная на отрезке [a; b] функция интегрируема;

2) ограниченная на отрезке [a; b] функция, имеющая лишь конечное число точек разрыва, интегрируема;

3) монотонная ограниченная функция интегрируема.

Свойства определенного интеграла

1. Величина определённого интеграла не зависит от обозначения переменной интегрирования:

.

2. Определённый интеграл с равными пределами интегрирования равен нулю:

.

3. При перестановке пределов интегрирования определенный интеграл меняет знак:

.

4. свойство аддитивности: при любом взаимном расположении чисел a, b, c имеет место формула:

.

5. свойство линейности:

.

Вычисление определённого интеграла

1. Формула Ньютона - Лейбница:

,

где F(x) - первообразная для f(x).

Пример 1. Вычислить интеграл .

Решение

.

2. Замена переменной: пусть f(x) - непрерывная на отрезке [a;b] функция, а функция и ее производная непрерывны на отрезке , где , . Тогда справедлива формула:

.

Вместе с заменой переменной в определенном интеграле заменяются пределы интегрирования. определенный интеграл функция переменная

Пример 2. Вычислить интеграл .

Решение. Используем метод замены переменной. Положим . Тогда .

Находим новые пределы интегрирования, используя равенство замены переменной: если , то ; если , то . Получим:

=.

3. Интегрирование по частям: пусть u(x) и v(x) - непрерывные функции, которые имеют непрерывные производные на отрезке [a;b]. Тогда справедлива формула интегрирования по частям:

.

Пример 3. Вычислить интеграл .

Решение

.

Задачи для самостоятельного решения

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

11. ;

12. ;

13. ;

14. ;

15. .

Домашнее задание

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. .

Размещено на Allbest.ru

...

Подобные документы

  • Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.

    презентация [487,1 K], добавлен 11.04.2013

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка [327,4 K], добавлен 01.07.2009

  • Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.

    контрольная работа [345,3 K], добавлен 22.08.2009

  • Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.

    презентация [174,5 K], добавлен 18.09.2013

  • Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.

    курс лекций [514,0 K], добавлен 31.05.2010

  • Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.

    контрольная работа [459,6 K], добавлен 16.04.2010

  • Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, как предел интегральной суммы. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница. Геометрический и механический смысл определенного интеграла.

    реферат [576,4 K], добавлен 30.10.2010

  • Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.

    курсовая работа [232,5 K], добавлен 21.10.2011

  • Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.

    контрольная работа [617,2 K], добавлен 08.07.2011

  • Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.

    конспект урока [147,7 K], добавлен 23.10.2013

  • Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.

    презентация [96,6 K], добавлен 18.09.2013

  • Общая схема применения определенного интеграла, правила и принципы реализации данного процесса. Вычисления координат центра тяжести плоских фигур. Решения задач на вычисление силы взаимодействия двух материальных тел, вращающихся вокруг неподвижной оси.

    методичка [195,5 K], добавлен 15.06.2015

  • Ознакомление с понятием и основными свойствами определенного интеграла. Представление формулы расчета интегральной суммы для функции y=f(x) на отрезке [а, b]. Равенство нулю интеграла при условии равенства нижнего и верхнего пределов интегрирования.

    презентация [64,2 K], добавлен 18.09.2013

  • Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация [1,2 M], добавлен 15.01.2014

  • Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

    шпаргалка [42,3 K], добавлен 21.08.2009

  • Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация [1,8 M], добавлен 05.07.2016

  • Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа [1,9 M], добавлен 21.01.2008

  • Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.

    контрольная работа [842,6 K], добавлен 10.02.2017

  • Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.

    презентация [120,3 K], добавлен 18.04.2013

  • Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.

    контрольная работа [71,8 K], добавлен 05.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.