Приближенные методы вычисления определенных интегралов

Рассмотрение методов вычисления определенных интегралов, подынтегральных функций которых не являются элементарными. Характеристика метода прямоугольников. Исследование метода трапеций и парабол. Оценка точности вычисления "неберущихся" интегралов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 05.05.2016
Размер файла 186,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Брянская государственная инженерно-технологическая академия»

Кафедра математики

Приближенные методы вычисления определенных интегралов

Методические указания и задания к расчетно-графической работе

для студентов всех направлений подготовки бакалавров очной формы обучения

Составители: Баранова И.М., зав. кафедрой математики БГИТА,

Гущин Г.В., доцент кафедры математики БГИТА,

Еловиков А.Б., доцент кафедры Высшей математики ЗФЭИ,

Часова Н.А., доцент кафедры математики БГИТА

Рецензент: Евтюхов К.Н. - к., ф.- м.н., профессор кафедры физики

Брянск 2012

Введение

При решении ряда физических и технических задач встречаются определенные интегралы, которые не могут быть вычислены в элементарных функциях. Кроме того, в некоторых важных задачах возникает необходимость вычисления определенных интегралов, подынтегральные функции которых не являются элементарными.

Наиболее употребляемыми приближенными методами вычисления определенных интегралов являются: метод прямоугольников, метод трапеций и метод парабол (Симпсона).

Основная идея этих методов заключается в замене подынтегральной функции функцией более простой природы - многочленом малой степени (0, 2, 3, …).

Приближенные методы вычисления определенных интегралов

1. Метод прямоугольников

Разобьем отрезок на равных частей при помощи точек:

, , , .

Метод прямоугольников заключается в замене интеграла суммой:

.

Для приближенных практических расчетов применяется формулы:

, (1)

. (2)

Из рисунка ясно, что если - положительная и возрастающая функция, то формула (1) выражает площадь ступенчатой фигуры, составленной из «входящих» прямоугольников, а формула (2) - площадь ступенчатой фигуры, состоящей из «выходящих» прямоугольников.

Абсолютная погрешность приближенных равенств (1) и (2) оценивается с помощью следующей формулы: , где - наибольшее значение на отрезке .

2. Метод трапеций

Разобьем отрезок на равных частей при помощи точек:

, , , .

Метод трапеций заключается в замене интеграла суммой:

.

Для приближенных практических расчетов применяется формула:

. (3)

Абсолютная погрешность приближения, полученного по формуле трапеций, оценивается с помощью формулы , где .

3. Метод парабол (метод Симпсона)

а) Через любые три точки с координатами проходит только одна парабола .

б) Выразим площадь под параболой на отрезке через :

.

Учитывая значения и из пункта а) следует:

.

в) Разобьем отрезок на равных частей при помощи точек:

, , , .

Метод парабол заключается в замене интеграла суммой:

.

Для приближенных практических расчетов применяется формула:

. (4)

Абсолютная погрешность вычисления по формуле (4) оценивается соотношением , где .

4. Оценка точности вычисления «неберущихся» интегралов

В данной работе вычисление абсолютной и относительной погрешности проводится при условии, что известно точное значение определенного интеграла. Однако не всякая первообразная, даже тогда, когда она существует, выражается в конечном виде через элементарные функции. Таковы первообразные, выраженные интегралами , , , и т.д. Во всех подобных случаях первообразная представляет собой некоторую новую функцию, которая не сводится к комбинации конечного числа элементарных функций.

Определенные интегралы от таких функций можно вычислить только приближенно. Для оценки точности вычисления в таких случаях используют, например, правило Рунге. В данном случае интеграл вычисляется по выбранной формуле (прямоугольников, трапеций, парабол Симпсона) при числе шагов, равном n, а затем при числе шагов, равном . Погрешность вычисления значения интеграла при числе шагов, равном , вычисляется по формуле Рунге:, для формул прямоугольников и трапеций , а для формулы Сипсона . Таким образом, интеграл вычисляется для последовательных значений числа шагов , , ..., где - начальное число шагов. Процесс вычислений заканчивается, когда для очередного значения будет выполнено условие , где - заданная точность.

Для того чтобы не вычислять один и тот же интеграл по нескольку раз для разных разбиений отрезка интегрирования, можно вычислить шаг интегрирования заранее.

Пример. Выбрать шаг интегрирования для вычисления интеграла с точностью 0,01 пользуясь квадратурными формулами прямоугольников, трапеций, Симпсона.

Квадратурная формула прямоугольников.

Вычислим, при каком шаге погрешность будет составлять 0,01:

подынтегральный трапеция парабола неберущийся

.

Поскольку , то .

При шаге отрезок разбивается на равностоящих узлов.

Квадратурная формула трапеций.

Вычислим, при каком шаге погрешность составит 0,01:

.

Поскольку , .

При шаге ,отрезок разбивается на равностоящих узлов.

Квадратурная формула Симпсона.

Вычислим, при каком шаге погрешность составит 0,01:

,

, .

При шаге , отрезок разбивается на равностоящих узлов.

Как и следовало ожидать, наименьшее количество равностоящих узлов получается при вычислении интеграла по квадратурной формуле Симпсона.

Содержание РГР «Приближенные методы вычисления определенных интегралов»

Студенту предлагается работа, состоящая из четырех этапов:

1 этап - точное вычисление определенного интеграла.

2 этап - приближенное вычисление определенного интеграла одним из методов: прямоугольников или трапеций.

3 этап - приближенное вычисление определенного интеграла методом парабол.

4 этап - расчет и сравнение абсолютной и относительной ошибок приближенных методов: , где - точное решение интеграла, - значение интеграла, полученное с помощью приближенных методов.

Построение графика подынтегральной функции.

Варианты и образец выполнения РГР приведены ниже.

Варианты

№ варианта

f(x)

a

b

Шаг h

1

0

1

0,1

2

0

1

0,1

3

0

1

0,1

4

0

1

0,1

5

0

р

0,1р

6

0

1

0,1

7

0

1

0,1

8

0

1

0,1

9

0

1

0,1

10

0

р/2

0,05р

11

0

1

0,1

12

0

1

0,1

13

0

1

0,1

14

1

2

0,1

15

0

р

0,1р

16

1

2

0,1

17

0

1

0,1

18

0

р/2

0,05р

19

0

1

0,1

20

0

р/2

0,05р

21

0

1

0,1

22

0

1

0,1

23

0

р/2

0,05р

24

0

р/2

0,05р

25

0

р/2

0,05р

26

0

р/2

0,05р

27

0

1

0,1

28

0

1

0,1

29

0

р/2

0,05р

30

0

1

0,1

Образец выполнения РГР

Задание. Вычислить интеграл

1. Точное вычисление:

= 0,40631714.

2. Приближенное вычисление с помощью формул прямоугольников:

,

, .

, .

Составим таблицу:

xi

yi = f (xi)

0

0

0

1

0,1

0,010005

2

0,2

0,04016

3

0,3

0,091207

4

0,4

0,165041

5

0,5

0,265165

6

0,6

0,396981

7

0,7

0,567851

8

0,8

0,786966

9

0,9

1,065081

10

1

1,414214

По первой формуле прямоугольников получаем:

? 0,1 = 0,1·3,062514 = 0,306251.

По второй формуле прямоугольников получаем:

? 0,1 = 0,1· 4,802669 = 0,480267.

В данном случае первая формула дает значение интеграла с недостатком, вторая - с избытком.

Вычислим относительную и абсолютную погрешности.

I = 0,40631714, ,

, .

, .

3. Приближенное вычисление по формуле трапеций:

В нашем случае получаем:

? 0,1 = =0,1 = 0,1·4,095562 = =0,409556.

Вычислим относительную и абсолютную погрешности.

I = 0,40631714,

, .

4. Приближенное вычисление по формуле Симпсона:

В нашем случае получаем:

? =

= = 0,406325.

Вычислим относительную и абсолютную погрешности.

I = 0,40631714

, .

В действительности, = 0,40631714.

Таким образом, при разбиении отрезка на 10 частей по формуле Симпсона мы получили 5 верных знаков; по формуле трапеций - три верных знака; по формуле прямоугольников мы можем ручаться только за первый знак.

Литература

1. Задачи и упражнения по математическому анализу для втузов: учеб. пособие для втузов / Г. С. Бараненков [и др.]; под ред. Б.П. Демидовича. - М.; Владимир: Астрель: Изд-во АСТ: ВКТ, 2010. - 495 с.

2. Кудрявцев, Л.Д. Краткий курс математического анализа: учеб. для вузов. Т. 1: Дифференциальное и интегральное исчисления функций одной переменной. Ряды / Л. Д. Кудрявцев. - 3-е изд., перераб. - М.: ФИЗМАТЛИТ, 2009. - 399 с.

3. Пискунов, Н.С. Дифференциальное и интегральное исчисления: учеб. пособие для втузов. В 2 т. Т. 1 / Н. С. Пискунов. - Изд. стер. - М.: Интеграл-Пресс, 2004. - 415 с.

4. Шипачев В.С. Высшая математика : учеб. для вузов / В. С. Шипачев. - 7-е изд., стер. - М.: Высш. шк., 2005. - 479 с.

Размещено на Allbest.ru

...

Подобные документы

  • Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.

    курсовая работа [187,8 K], добавлен 18.05.2019

  • Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа [1,0 M], добавлен 11.03.2013

  • Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.

    курсовая работа [349,3 K], добавлен 12.10.2009

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат [99,0 K], добавлен 05.09.2010

  • Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.

    контрольная работа [123,7 K], добавлен 14.01.2015

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация [525,7 K], добавлен 11.09.2011

  • Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.

    лабораторная работа [195,9 K], добавлен 21.12.2015

  • Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.

    курсовая работа [469,0 K], добавлен 13.12.2012

  • Математическая модель: определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула прямоугольников, трапеций, парабол. Программа для вычисления значения интеграла методом трапеций в среде пакета Matlab. Цикл if и for.

    контрольная работа [262,8 K], добавлен 05.01.2015

  • Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация [1,2 M], добавлен 15.01.2014

  • Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.

    курсовая работа [100,4 K], добавлен 12.05.2009

  • Полное исследование функции с помощью производных, построение графика функции, нахождение ее наибольшего и наименьшего значения на отрезке. Методика вычисления неопределенных и определенных интегралов. Нахождение общего решения дифференциального уравнения

    контрольная работа [133,4 K], добавлен 26.02.2012

  • Особенность метода Остроградского. Процесс вычисления производных и нахождения интегралов различных функций. Алгоритм Евклида. Интегрирование биноминальных дифференциалов. Тригонометрические и гиперболические подстановки. Основные виды рациональностей.

    курсовая работа [916,8 K], добавлен 06.11.2014

  • Методика и основные этапы нахождения параметров: площади криволинейной трапеции и сектора, длины дуги кривой, объема тел, площади поверхности тел вращения, работы переменной силы. Порядок и механизм вычисления интегралов с помощью пакета MathCAD.

    контрольная работа [752,3 K], добавлен 21.11.2010

  • Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.

    презентация [117,8 K], добавлен 18.09.2013

  • Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.

    презентация [96,6 K], добавлен 18.09.2013

  • Особенности решения алгебраических, нелинейных, трансцендентных уравнений. Метод половинного деления (дихотомия). Метод касательных (Ньютона), метод секущих. Численные методы вычисления определённых интегралов. Решение различными методами прямоугольников.

    курсовая работа [473,4 K], добавлен 15.02.2010

  • Понятие и назначение интегралов, их классификация и разновидности. Вычисление интегралов от тригонометрических функций: методика, основные этапы, используемые инструменты. Интегралы, зависящие от параметра, их отличительные особенности и вычисление.

    курсовая работа [1,1 M], добавлен 19.09.2011

  • Условия возникновения и особенности вычисления функций Матье, характеристика дифференциального уравнения Матье. Алгоритм решения задачи и алгоритмы вычисления радиальных функций эллиптического цилиндра. Определение точности результатов вычисления.

    научная работа [73,8 K], добавлен 02.05.2011

  • Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.

    контрольная работа [283,1 K], добавлен 01.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.