Развитие теории пределов
Основная характеристика предельного значения функции. Главный анализ строения базы окрестностей бесконечно удаленной точки. Проведение исследования понятия предела числовой последовательности. Особенность разложения числителя и знаменателя на множители.
Рубрика | Математика |
Предмет | Математика |
Вид | доклад |
Язык | русский |
Прислал(а) | Janewet |
Дата добавления | 07.10.2016 |
Размер файла | 127,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство теоремы Штольца. Практическое применение предела последовательности в экономике, геометрии и физике.
курсовая работа [407,2 K], добавлен 16.12.2013Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.
презентация [137,0 K], добавлен 25.01.2013Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.
контрольная работа [114,0 K], добавлен 17.12.2010Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.
контрольная работа [152,1 K], добавлен 11.08.2009Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.
презентация [78,9 K], добавлен 21.09.2013Предел последовательности, его графическое изображение. Основные свойства сходящихся последовательностей. Бесконечно большие и бесконечно малые функции, связь между функций, ее приделом и бесконечно малой функцией. Первый и второй замечательный предел.
контрольная работа [152,0 K], добавлен 14.05.2009Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.
презентация [665,0 K], добавлен 17.03.2017Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.
презентация [292,4 K], добавлен 14.11.2014Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.
курсовая работа [1,3 M], добавлен 30.12.2021Доказательство замечательных пределов величайшими умами знаменитых математиков. Неактуальность расчетов тригонометрических функций, логарифмов и степеней. Нахождение первого и второго замечательных пределов. Проведение модификации и значение пределов.
презентация [351,2 K], добавлен 27.06.2014Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.
курсовая работа [103,0 K], добавлен 28.02.2010Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.
презентация [314,4 K], добавлен 14.11.2014Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция [540,0 K], добавлен 25.03.2012Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.
контрольная работа [1,1 M], добавлен 26.03.2014Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.
курсовая работа [107,1 K], добавлен 29.04.2011Пределы функций и их основные свойства, операция предельного перехода, бесконечно малые функции. Производная функции, важнейшие правила дифференцирования, правило Лопиталя. Применение дифференциала функции в приближенных вычислениях, построение графиков.
методичка [335,2 K], добавлен 18.05.2010Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.
презентация [61,7 K], добавлен 21.09.2013Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.
презентация [917,8 K], добавлен 17.03.2010Уравнение стороны треугольника и ее угловой коэффициент. Координаты точки пересечения медиан. Уравнение прямой, проходящей через точки. Область определения функции. Поиск производной и предела функции. Площадь фигуры, ограниченной заданными линиями.
контрольная работа [94,9 K], добавлен 12.05.2012Проблема несоизмеримых, первый кризис в основании математики, его следствия и попытки преодоления. Зарождение и развитие понятия числа. Становление теории предела, создание теории действительного числа. Великие метематики: Вейерштрасс, Кантор, Дедекинд.
реферат [65,2 K], добавлен 26.11.2009