Определители матрицы системы линейных алгебраических уравнений
Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.10.2016 |
Размер файла | 62,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Основные определения. Определение. Матрицей размера mn, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.
А =
Основные действия над матрицами. Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.
Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.
Определение. Матрица вида: = E, называется единичной матрицей.
Определение. Если amn = anm, то матрица называется симметрической.
Пример. - симметрическая матрица
Определение. Квадратная матрица вида называется диагональной матрицей.
Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера. Таким образом, возможно определить операции сложения и вычитания матриц:
Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.
cij = aij bij
С = А + В = В + А.
Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.
(А+В) =А В
А() = А Аца алгебраический линейный уравнение
Пример. Даны матрицы А = ; B = , найти 2А + В.
2А = , 2А + В = .
Операция умножения матриц. Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:
AB = C;
Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.
Свойства операции умножения матриц
1)Умножение матриц не коммутативно, т.е. АВ ВА даже если определены оба произведения. Однако, если для каких - либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.
Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.
Перестановочными могут быть только квадратные матрицы одного и того же порядка.
АЕ = ЕА = А
Очевидно, что для любых матриц выполняются следующее свойство:
AO = O; OA = O,
где О - нулевая матрица.
2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:
(АВ)С=А(ВС).
3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:
А(В + С) = АВ + АС
(А + В)С = АС + ВС.
4) Если произведение АВ определено, то для любого числа верно соотношение:
(AB) = (A)B = A(B).
5) Если определено произведение АВ, то определено произведение ВТАТ и выполняется равенство:
(АВ)Т = ВТАТ, где индексом Т обозначается транспонированная матрица.
6) Заметим также, что для любых квадратных матриц det (AB) = detAdetB.
Понятие det (определитель, детерминант) будет рассмотрено ниже.
Определение. Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.
А = ; В = АТ=;
другими словами, bji = aij.
В качестве следствия из предыдущего свойства (5) можно записать, что: (ABC)T = CTBTAT, при условии, что определено произведение матриц АВС.
Пример. Даны матрицы А = , В = , С = и число = 2. Найти АТВ+С.
AT = ; ATB = = =
C = ; АТВ+С = + = .
Пример. Найти произведение матриц А = и В = .
АВ = =
ВА = = 21 + 44 + 13 = 2 + 16 + 3 = 21.
Пример. Найти произведение матриц А=, В =
АВ = = = .
Определители (детерминанты)
Определение. Определителем квадратной матрицы А= называется число, которое может быть вычислено по элементам матрицы по формуле:
det A = , где
М1к - детерминант матрицы, полученной из исходной вычеркиванием первой строки и k - го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.
Предыдущая формула позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:
det A =
Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:
detA = , i = 1,2,…,n.
Очевидно, что различные матрицы могут иметь одинаковые определители.
Определитель единичной матрицы равен 1.
Для указанной матрицы А число М1к называется дополнительным минором элемента матрицы a1k. Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.
Определение. Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.
Свойство1. Важным свойством определителей является следующее соотношение:
det A = det AT;
Свойство 2. det (AB) = detAdetB
Свойство 3. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.
Свойство 4. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.
Определение: Столбцы (строки) матрицы называются линейно зависимыми, если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.
Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.
Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)
Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.
Свойство 9. Если для элементов какой- либо строки или столбца матрицы верно соотношение: d = d1 d2, e = e1 e2, f = f1 f2, то верно:
Пример. Вычислить определитель матрицы А =
= -5 + 18 + 6 = 19.
Пример:. Даны матрицы А = , В = . Найти det (AB).
1-й способ: det A = 4 - 6 = -2; det B = 15 - 2 = 13; det (AB) = det A det B = -26.
2- й способ: AB = , det (AB) = 718 - 819 = 126 - 152 = -26.
Элементарные преобразования матрицы. Элементарными преобразованиями матрицы назовем следующие преобразования:
1) умножение строки на число, отличное от нуля;
2) прибавление к элемнтам одной строки элементов другой строки;
3) перестановка строк;
4) вычеркивание (удаление) одной из одинаковых строк (столбцов);
5) транспонирование;
Те же операции, применяемые для столбцов, также называются элементарными преобразованиями.
С помощью элементарных преобразований можно к какой-либо строке или столбцу прибавить линейную комбинацию остальных строк (столбцов).
Миноры. Выше было использовано понятие дополнительного минора матрицы. Дадим определение минора матрицы.
Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется минором матрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.
Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.
Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором.
Алгебраические дополнения
Определение. Алгебраическим дополнением минора матрицы называется его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.
В частном случае, алгебраическим дополнением элемента матрицы называется его дополнительный минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.
Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, …,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.
Обратная матрица
Определим операцию деления матриц как операцию, обратную умножению.
Определение. Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию: XA = AX = E, где Е - единичная матрица того же самого порядка, что и матрица А, то матрица Х называется обратной к матрице А и обозначается А1.
Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.
Рассмотрим общий подход к нахождению обратной матрицы.
Исходя из определения произведения матриц, можно записать:
AX = E , i=(1,n), j=(1,n),
eij = 0, i j,
eij = 1, i = j.
Таким образом, получаем систему уравнений:
,
Решив эту систему, находим элементы матрицы Х.
Пример. Дана матрица А = , найти А-1.
Таким образом, А-1=.
Однако, такой способ не удобен при нахождении обратных матриц больших порядков, поэтому обычно применяют следующую формулу:
где Мji- дополнительный минор элемента аji матрицы А.
Пример. Дана матрица А = , найти А-1.
det A = 4 - 6 = -2.
M11=4; M12= 3; M21= 2; M22=1
x11= -2; x12= 1; x21= 3/2; x22= -1/2
Таким образом, А-1=.
Cвойства обратных матриц
Укажем следующие свойства обратных матриц:
(A-1)-1 = A;
(AB)-1 = B-1A-1
(AT)-1 = (A-1)T.
Пример. Дана матрица А = , найти А3.
А2 = АА = = ; A3 = = .
Отметим, что матрицы и являются перестановочными.
Пример. Вычислить определитель
= -1
= -1(6 - 4) - 1(9 - 1) + 2(12 - 2) = -2 - 8 + 20 = 10.
= = 2(0 - 2) - 1(0 - 6) = 2.
= = 2(-4) - 3(-6) = -8 + 18 = 10.
Значение определителя: -10 + 6 - 40 = -44.
Базисный минор матрицы
Ранг матрицы
Как было сказано выше, минором матрицы порядка s называется определитель матрицы, образованной из элементов исходной матрицы, находящихся на пересечении каких - либо выбранных s строк и s столбцов.
Определение. В матрице порядка mn минор порядка r называется базисным, если он не равен нулю, а все миноры порядка r+1 и выше равны нулю, или не существуют вовсе, т.е. r совпадает с меньшим из чисел m или n.
Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными.
В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок.
Определение. Порядок базисного минора матрицы называется рангом матрицы и обозначается Rg А.
Очень важным свойством элементарных преобразований матриц является то, что они не изменяют ранг матрицы.
Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.
Надо отметить, что равные матрицы и эвивалентные матрицы - понятия совершенно различные.
Теорема. Наибольшее число линейно независимых столбцов в матрице равно числу линейно независимых строк.
Т.к. элементарные преобразования не изменяют ранг матрицы, то можно существенно упростить процесс нахождения ранга матрицы.
Пример. Определить ранг матрицы.
, RgA = 2.
Пример: Определить ранг матрицы.
, Rg = 2.
Пример. Определить ранг матрицы.
, Rg = 2.
Если с помощью элементарных преобразований не удается найти матрицу, эквивалентную исходной, но меньшего размера, то нахождение ранга матрицы следует начинать с вычисления миноров наивысшего возможного порядка. В вышеприведенном примере - это миноры порядка 3. Если хотя бы один из них не равен нулю, то ранг матрицы равен порядку этого минора.
Теорема о базисном миноре. Теорема. В произвольной матрице А каждый столбец (строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.
Таким образом, ранг произвольной матрицы А равен максимальному числу линейно независимых строк (столбцов) в матрице.
Если А- квадратная матрица и detA = 0, то по крайней мере один из столбцов - линейная комбинация остальных столбцов. То же самое справедливо и для строк. Данное утверждение следует из свойства линейной зависимости при определителе равном нулю.
Матричный метод решения систем линейных уравнений
Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных.
Метод удобен для решения систем невысокого порядка.
Метод основан на применении свойств умножения матриц.
Пусть дана система уравнений:
Составим матрицы: A = ; B = ; X = .
Систему уравнений можно записать: AX = B.
Сделаем следующее преобразование: A-1AX = A-1B, т.к. А-1А = Е, то ЕХ = А-1В
Х = А-1В
Для применения данного метода необходимо находить обратную матрицу, что может быть связано с вычислительными трудностями при решении систем высокого порядка.
Пример. Решить систему уравнений:
Х = , B = , A =
Найдем обратную матрицу А-1.
= det A = 5(4-9) + 1(2 - 12) - 1(3 - 8) = -25 - 10 +5 = -30.
M11 = = -5; M21 = = 1; M31 = = -1;
M12 = M22 = M32 =
M13 = M23 = M33 =
A-1 = ;
Cделаем проверку:
AA-1 = =E.
Находим матрицу Х.
Х = = А-1В = = .
Итого решения системы: x =1; y = 2; z = 3.
Несмотря на ограничения возможности применения данного метода и сложность вычислений при больших значениях коэффициентов, а также систем высокого порядка, метод может быть легко реализован на ЭВМ.
Метод Крамера. Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.
Для этого необходимо, чтобы определитель матрицы системы не равнялся 0. det A 0;
Действительно, если какое- либо уравнение системы есть линейная комбинация остальных, то если к элементам какой- либо строки прибавить элементы другой, умноженные на какое- либо число, с помощью линейных преобразований можно получить нулевую строку. Определитель в этом случае будет равен нулю. матрица алгебраический уравнение
Теорема. (Правило Крамера)
Теорема. Система из n уравнений с n неизвестными
в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:
xi = i/, где
= det A, а i - определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.
i =
Пример.
A = ; 1= ; 2= ; 3= ;
x1 = 1/detA; x2 = 2/detA; x3 = 3/detA;
Пример. Найти решение системы уравнений:
= = 5(4 - 9) + (2 - 12) - (3 - 8) = -25 - 10 + 5 = -30;
1 = = (28 - 48) - (42 - 32) = -20 - 10 = -30.
x1 = 1/ = 1;
2 = = 5(28 - 48) - (16 - 56) = -100 + 40 = -60.
x2 = 2/ = 2;
3 = = 5(32 - 42) + (16 - 56) = -50 - 40 = -90.
x3 = 3/ = 3.
Как видно, результат совпадает с результатом, полученным выше матричным методом.
Если система однородна, т.е. bi = 0, то при 0 система имеет единственное нулевое решение x1 = x2 = … = xn = 0.
При = 0 система имеет бесконечное множество решений.
Для самостоятельного решения:
;
Ответ: x = 0; y = 0; z = -2.
Решение произвольных систем линейных уравнений. Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.
Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:
,
где aij - коэффициенты, а bi - постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.
Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.
Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.
Определение. Для системы линейных уравнений матрица А = называется матрицей системы, а матрица А*= называется расширенной матрицей системы
Определение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна, т.к. всегда имеет нулевое решение.
Элементарные преобразования систем. К элементарным преобразованиям относятся:
1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.
2)Перестановка уравнений местами.
3)Удаление из системы уравнений, являющихся тождествами для всех х.
Теорема Кронекера - Капелли (условие совместности системы)
(Леопольд Кронекер (1823-1891) немецкий математик)
Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.
RgA = RgA*.
Очевидно, что система (1) может быть записана в виде:
x1 + x2 + … + xn
Доказательство.
1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход АА* не изменяют ранга.
2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов - линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.
Пример. Определить совместность системы линейных уравнений:
A =
~ . RgA = 2.
A* = RgA* = 3.
Система несовместна.
Пример. Определить совместность системы линейных уравнений.
А = ; = 2 + 12 = 14 0; RgA = 2;
A* =
RgA* = 2.
Система совместна. Решения: x1 = 1; x2 =1/2.
Метод Гаусса. (Карл Фридрих Гаусс (1777-1855) немецкий математик) В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.
Рассмотрим систему линейных уравнений:
Разделим обе части 1-го уравнения на a11 0, затем:
1) умножим на а21 и вычтем из второго уравнения
2) умножим на а31 и вычтем из третьего уравнения и т.д.
Получим:
,
где d1j = a1j/a11, j = 2, 3, …, n+1.
dij = aij - ai1d1j i = 2, 3, …, n; j = 2, 3, …, n+1.
Далее повторяем эти же действия для второго уравнения системы, потом - для третьего и т.д. Пример. Решить систему линейных уравнений методом Гаусса.
Составим расширенную матрицу системы.
А* =
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: x3 = 2; x2 = 5; x1 = 1.
Пример. Решить систему методом Гаусса.
Составим расширенную матрицу системы.
Таким образом, исходная система может быть представлена в виде:
,
откуда получаем: z = 3; y = 2; x = 1. Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.
Размещено на Allbest.ru
...Подобные документы
Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.
реферат [111,8 K], добавлен 09.06.2011Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.
лабораторная работа [489,3 K], добавлен 28.10.2014Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
реферат [66,4 K], добавлен 14.08.2009Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.
курсовая работа [59,8 K], добавлен 27.03.2011Вид в матричной форме, определитель матрицы, алгебраического дополнения и всех элементов матрицы, транспоная матрица. Метод Крамера, правило Крамера — способ решения квадратных систем линейных алгебраических уравнений с определителем основной матрицы.
задача [93,5 K], добавлен 08.11.2010Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.
реферат [102,8 K], добавлен 05.08.2009Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача [26,8 K], добавлен 29.05.2012Решение системы линейных алгебраических уравнений большой размерности с разреженными матрицами методом простого итерационного процесса. Понятие нормы матрицы и вектора. Критерии прекращения итерационного процесса. Выбор эффективного итерационного метода.
лабораторная работа [21,8 K], добавлен 06.07.2009Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа [63,2 K], добавлен 24.10.2010Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.
презентация [987,7 K], добавлен 22.11.2014Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.
контрольная работа [320,1 K], добавлен 13.07.2009Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.
презентация [642,7 K], добавлен 31.10.2016Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.
презентация [294,9 K], добавлен 14.11.2014Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.
контрольная работа [397,2 K], добавлен 13.12.2010Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.
контрольная работа [239,4 K], добавлен 19.06.2009Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.
курсовая работа [220,0 K], добавлен 21.10.2011Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.
лабораторная работа [264,1 K], добавлен 24.09.2014Структура и элементы, принципы формирования и правила разрешения систем линейных алгебраических уравнений. История развития различных методов решения: матричного, Крамера, с помощью функции Find. Особенности применения возможностей программы Mathcad.
контрольная работа [96,0 K], добавлен 09.03.2016Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.
лекция [55,2 K], добавлен 02.06.2008Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.
реферат [60,6 K], добавлен 15.08.2009