Элементы теории графов

Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.

Рубрика Математика
Предмет Дискретная математика
Вид методичка
Язык русский
Прислал(а) Incognito
Дата добавления 15.10.2016
Размер файла 106,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.

    реферат [368,2 K], добавлен 13.06.2011

  • История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.

    курсовая работа [636,2 K], добавлен 20.12.2015

  • Задача о кенигсбергских мостах, четырех красках, выходе из лабиринта. Матрица инцидентности для неориентированного и (ориентированного) графа. Степень вершины графа. Ориентированное дерево. Линейные диаграммы или графики Ганта. Метод критического пути.

    презентация [258,0 K], добавлен 23.06.2013

  • Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.

    реферат [81,0 K], добавлен 23.11.2008

  • Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.

    курсовая работа [625,4 K], добавлен 30.09.2014

  • Понятие "граф" и его матричное представление. Свойства матриц смежности и инцидентности. Свойства маршрутов, цепей и циклов. Задача нахождения центральных вершин графа, его метрические характеристики. Приложение теории графов в областях науки и техники.

    курсовая работа [271,1 K], добавлен 09.05.2015

  • Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.

    лабораторная работа [85,5 K], добавлен 09.01.2009

  • Проверка справедливости тождеств или включений с использованием алгебры множеств и диаграмм Эйлера-Венна. Изображение графа и матрицы отношения, обладающего свойствами рефлексивности, транзитивности и антисиммеричности. Изучение неориентированного графа.

    контрольная работа [1,3 M], добавлен 05.05.2013

  • Понятие и матричное представление графов. Ориентированные и неориентированные графы. Опеределение матрицы смежности. Маршруты, цепи, циклы и их свойства. Метрические характеристики графа. Применение теории графов в различных областях науки и техники.

    курсовая работа [423,7 K], добавлен 21.02.2009

  • Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.

    дипломная работа [145,5 K], добавлен 19.07.2011

  • Ориентированные и неориентированные графы: общая характеристика, специальные вершины и ребра, полустепени вершин, матрицы смежности, инцидентности, достижимости, связности. Числовые характеристики каждого графа, обход в глубину и в ширину, базис циклов.

    курсовая работа [225,5 K], добавлен 14.05.2012

  • Математическое описание системы автоматического управления с помощью графов. Составление графа и его преобразование, избавление от дифференциалов. Оптимизации ориентированных и неориентированных графов, составления матриц смежности и инцидентности.

    лабораторная работа [42,2 K], добавлен 11.03.2012

  • Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.

    дипломная работа [272,5 K], добавлен 05.06.2014

  • Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.

    презентация [430,0 K], добавлен 19.11.2013

  • Понятия теории графов. Понятия смежности, инцидентности и степени. Маршруты и пути. Матрицы смежности и инцедентности. Алгоритм поиска минимального пути в ненагруженном ориентированном орграфе на любом языке программирования, алгоритм фронта волны.

    курсовая работа [466,3 K], добавлен 28.04.2011

  • Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.

    презентация [150,3 K], добавлен 16.01.2015

  • Алгоритм перехода к графическому представлению для неориентированного графа. Количество вершин неориентированного графа. Чтение из матрицы смежностей. Связи между вершинами в матрице. Задание координат вершин в зависимости от количества секторов.

    лабораторная работа [34,0 K], добавлен 29.04.2011

  • Понятие "граф". Отношения между разнородными элементами. Матричное представление графов. Операции над графами. Маршруты, цепи, циклы. Метрические характеристики графа. Приложение теории графов в различных областях науки и техники. Листинг программы.

    курсовая работа [725,8 K], добавлен 15.12.2008

  • Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.

    контрольная работа [463,0 K], добавлен 17.05.2015

  • Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.

    курсовая работа [1006,8 K], добавлен 23.12.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.