Элементы теории графов

Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.

Рубрика Математика
Предмет Дискретная математика
Вид учебное пособие
Язык русский
Прислал(а) В. Носов
Дата добавления 15.10.2016
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.

    курсовая работа [636,2 K], добавлен 20.12.2015

  • Понятие "граф". Отношения между разнородными элементами. Матричное представление графов. Операции над графами. Маршруты, цепи, циклы. Метрические характеристики графа. Приложение теории графов в различных областях науки и техники. Листинг программы.

    курсовая работа [725,8 K], добавлен 15.12.2008

  • Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.

    курсовая работа [625,4 K], добавлен 30.09.2014

  • Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.

    презентация [150,3 K], добавлен 16.01.2015

  • Применение интервальных графов. Алгоритмы распознавания интервальных графов: поиск в ширину, поиск в ширину с дополнительной сортировкой, лексикографический поиск в ширину, алгоритм "трех махов". Программа задания единичного интервального графа.

    курсовая работа [1,5 M], добавлен 10.02.2017

  • Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.

    курсовая работа [109,1 K], добавлен 22.01.2016

  • Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.

    презентация [430,0 K], добавлен 19.11.2013

  • Понятие и матричное представление графов. Ориентированные и неориентированные графы. Опеределение матрицы смежности. Маршруты, цепи, циклы и их свойства. Метрические характеристики графа. Применение теории графов в различных областях науки и техники.

    курсовая работа [423,7 K], добавлен 21.02.2009

  • Понятие матрицы достижимости и связности. Операция удаления вершины из графа. Алгоритм выделения компонент сильной связности. Разработка и листинг программы на языке Turbo Pascal, осуществляющей вычисление матрицы достижимости по заданному алгоритму.

    курсовая работа [584,3 K], добавлен 26.04.2011

  • Понятие и внутренняя структура графа, его применение и матричное представление (матрица инциденций, разрезов, цикломатическая, Кирхгофа). Специальные свойства и признаки графов, решение оптимизационных задач. Венгерский алгоритм, матричная интерпретация.

    курсовая работа [664,6 K], добавлен 24.12.2013

  • Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.

    курсовая работа [1006,8 K], добавлен 23.12.2007

  • Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.

    дипломная работа [272,5 K], добавлен 05.06.2014

  • Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.

    лабораторная работа [85,5 K], добавлен 09.01.2009

  • Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.

    контрольная работа [466,3 K], добавлен 11.03.2011

  • Задача о кенигсбергских мостах, четырех красках, выходе из лабиринта. Матрица инцидентности для неориентированного и (ориентированного) графа. Степень вершины графа. Ориентированное дерево. Линейные диаграммы или графики Ганта. Метод критического пути.

    презентация [258,0 K], добавлен 23.06.2013

  • Алгоритм, использующий метод Магу-Вейссмана. Общие сведения, описание, вызов и загрузка, функциональное назначение и программный код программы. Описание логической структуры и инструкция пользователю, решение контрольных примеров раскраски графа.

    курсовая работа [350,5 K], добавлен 20.12.2009

  • Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.

    дипломная работа [145,5 K], добавлен 19.07.2011

  • Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.

    реферат [81,0 K], добавлен 23.11.2008

  • Понятие "граф" и его матричное представление. Свойства матриц смежности и инцидентности. Свойства маршрутов, цепей и циклов. Задача нахождения центральных вершин графа, его метрические характеристики. Приложение теории графов в областях науки и техники.

    курсовая работа [271,1 K], добавлен 09.05.2015

  • Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.

    курсовая работа [1,8 M], добавлен 18.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.