Анализ междисциплинарных связей при изучении дисциплины математика в строительном вузе
Особенность междисциплинарных связей между дисциплиной математика и сопротивлением материалов на примере решения дифференциального уравнения балки на упругом основании с помощью тригонометрических рядов. Проведение исследования коэффициентов ряда Фурье.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 25.11.2016 |
Размер файла | 93,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Пензенский государственный университет архитектуры и строительства, кафедра “Математика и математическое моделирование”
К ВОПРОСУ О МЕЖДИСЦИПЛИНАРНЫХ СВЯЗЯХ ПРИ ИЗУЧЕНИИ ДИСЦИПЛИНЫ МАТЕМАТИКА В СТРОИТЕЛЬНОМ ВУЗЕ
Арутчева Э.Р.
Снежкина О.В.
Учитывая, что в строительном вузе при преподавании курса математики особое место должны занимать задачи прикладной направленности, предлагается в последнем семестре обучения специалистов-инженеров по направлению: “Строительство уникальных зданий и сооружений” наиболее тесно “связать” с дисциплинами “Механика” и “Сопротивление материалов”.
В качестве примера междисциплинарных связей при изучении дисциплины математика рассмотрим решение дифференциального уравнения балки на упругом основании с помощью тригонометрических рядов. Известно, что прогиб w однородной балки на упругом основании, находящейся под действием внешней нагрузки р(x) определяется уравнением
.
Задача сводится к определению коэффициентов pn тригонометрического ряда, апроксимируещего функцию распределения нагрузки. Рассмотрим разложение произвольной функции в бесконечный тригонометрический ряд., где pn являются коэффициентами ряда Фурье функции р(x).
Функцию p(x) распределения нагрузки выразим в виде:
.
Для этого введем новую переменную и расширим определение функции p(x)=f (z) на интервале 0<x<2l, который соответствует интервалу 0<z<2 p.
Примем, что при x>l имеет место равенство:
p(2l - x)= - p(x)
(2p - z)= -(z)
При разложении функции (z) в ряд Фурье все коэффициенты при косинусах исчезают и в разложении участвуют только члены, которые содержат синусы:
.
Подставляя в уравнение:
вместо w тригонометрический ряд
,
получим:
.
Допустим, что аналогичным путем решено уравнение для той же балки, но без упругого основания (k=0). Это решение имеет вид:
.
Получим для формулу:
.
Подсчитаем разность между w и , получим:
.
Это равенство позволяет подсчитать влияние упругого основания, если известен изгиб балки без упругого основания. Если безразмерная величина не очень мала, то знаменатели членов в правой части очень быстро возрастают, во многих случаях достаточно бывает сохранить в равенстве один или два члена. Таким образом, проблема сведена к вычислению изгиба балки и подсчета нескольких поправочных членов в соответствии с равенством:
.
Изгибающий момент
.
Если обозначить изгибающий момент при отсутствии упругого основания через , то следует, что:
,
где - коэффициенты Фурье функции , то есть:
.
Применим эти результаты к случаю балки, которая нагружена сосредоточенной нагрузкой р в ее центре. Максимум момента
=.
Тогда:
, для 0<x<
, для 0<x<
для х< .
Если вместо х подставить (l - x), то получим выражение для М, удовлетворяющее х>.
Если обозначить расстояние от нулевой точки кривой прогиба до точки приложения сосредоточенной нагрузки, в случае бесконечной балки при
междисциплинарный дифференциальный уравнение тригонометрический
и, принимая во внимание, что , получим:
Предположим, что , следовательно, максимальный момент (в точке х=), равен:
Можно увидеть, что вычисление трех членов ряда Фурье дает поправки к значению , составляющие соответственно 65, 3.8, 0.5 процента. При точности, которая требуется обычно в таких вычислениях, можно ограничиться первыми двумя членами тригонометрического ряда.
Таким образом, на рассматриваемом примере показано, как ряды Фурье помогают решать задачи прикладной направленности и наглядно продемонстриррованы междисциплинарные связи курсов математики и сопротивления материалов.
Аннотация
Рассматриваются междисциплинарные связи между дисциплинами математика и сопротивление материалов на примере решения дифференциального уравнения балки на упругом основании с помощью тригонометрических рядов.
Ключевые слова: дифференциальное уравнение балки, междисциплинарные связи, тригонометрический ряд
Размещено на Allbest.ru
...Подобные документы
Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).
презентация [30,4 K], добавлен 18.09.2013Способы задания, предел и непрерывность функции. Свойства неопределенного интеграла. Понятие числового ряда и свойства сходящихся рядов. Порядок дифференциального уравнения. Случайные события и операции над ними. Классическое определение вероятности.
учебное пособие [532,5 K], добавлен 23.01.2014Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.
курсовая работа [183,1 K], добавлен 25.11.2011Вычисление пределов функций, производных функций с построением графика. Вычисление определенных интегралов, площади фигуры, ограниченной графиками функций. Общее решение дифференциального уравнения, его частные решения. Исследование сходимости ряда.
контрольная работа [356,6 K], добавлен 17.07.2008Получение точного решения дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на заданном интервале, графическое решение. Относительная и абсолютная погрешность методов Эйлера и Рунге-Кутты.
курсовая работа [990,8 K], добавлен 17.07.2014Вавилонская система счисления, таблицы обратных чисел и математика для исследования движений планет. Египетский календарь и введение символа для обозначения нуля у майя. Греческая математика, Индия и арабы. Современная математика и математический анализ.
реферат [49,7 K], добавлен 27.04.2009Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.
контрольная работа [332,6 K], добавлен 14.12.2012Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.
курсовая работа [1,1 M], добавлен 21.12.2009Определение числа гармоник разложения функций в ряд Фурье, содержащих в сумме не менее 90% энергии. Построение амплитудного и фазового спектров функции, графика суммы ряда. Расчет среднеквадратичной ошибки между исходной функцией и частичной суммой Фурье.
контрольная работа [348,5 K], добавлен 13.12.2011Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа [1,9 M], добавлен 06.05.2010Использование формул объема прямоугольного параллелепипеда и площади прямоугольника при расчете расходных материалов для изготовления различных упаковок. Осуществление связей математики с окружающим миром в целях улучшения экономичности упаковки чая.
научная работа [44,6 K], добавлен 11.01.2010Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.
монография [575,3 K], добавлен 28.03.2012Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.
реферат [25,8 K], добавлен 29.05.2010Алгоритм введения понятия ряда Фурье, опирающийся на моделирование физических задач в теоретическом курсе высшей математики для студентов физико-математических и инженерно-технических специальностей вузов. Функции и свойства рядов, их физический смысл.
курсовая работа [1,8 M], добавлен 20.05.2015Определение зависимости между танцем и математикой на примере изучения белорусских народных танцев. Анализ математических составляющих танца. Ознакомление с особенностями использования геометрических фигур в постановке национальных белорусских танцев.
контрольная работа [994,7 K], добавлен 15.09.2019Значение понятия математика. Ее роль в науке. Математика как наука основанная на разнообразие математических моделей, задачей которых является отображение реальных событий и явлений. Особенности математического языка. Известные высказывания о математике.
реферат [21,7 K], добавлен 07.05.2013Европейская математика эпохи Возрождения. Создание буквенного исчисления Франсуа Виет и метода решения уравнений. Усовершенствование вычислений в конце XVI – начале XVII веков: десятичные дроби, логарифмы. Установление связи тригонометрии и алгебры.
презентация [4,9 M], добавлен 20.09.2015Математика и информатика. Решение системы линейных алгебраических уравнений методом Крамера. Работа в текстовом редакторе MS WORD. Рисование с помощью графического редактора. Определение вероятности. Построение графика функции с помощью MS Excel.
контрольная работа [443,3 K], добавлен 10.01.2009Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.
контрольная работа [65,3 K], добавлен 15.12.2010Уравнения и способы их решения методом подбора переменных, на основе соотношения между частью и целым, зависимости между компонентами действий, знаний смысла умножения, приема с весами. Развитие познавательного интереса к математике в начальной школе.
курсовая работа [591,0 K], добавлен 24.10.2014