Показательные уравнения и логарифмы

Понятие и отличительные особенности показательных уравнений и неравенств как такой разновидности математических категорий, в которых неизвестное содержится в показателе степени. Сущность и основные характеристики, свойства алгоритмов и операции над ними.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 24.11.2016
Размер файла 31,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Показательные уравнения и логарифмы

Введение

Название «математика» происходит от греческого слова «матейн» (mathein) - учиться, познавать. Древние греки вообще считали, что понятия «математика» (mathematike) и «наука», «познание» (mathema) - синонимы. Им было свойственно такое понимание универсализма этой отрасли знания, которое два тысячелетия спустя выразил Рене Декарт, писавший: «К области математики относят науки, в которых рассматриваются либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звезды, звуки или что-нибудь другое…; таким образом, должна существовать некая общая наука, объясняющая все, относящееся к порядку и мере, не входя в исследование никаких частных предметов…»

Другое объяснение происхождения слова «математика» связано с греческим словом «матема» (mathema), что означает урожай, сбор урожая. Разметка земельных участков (геометрия), определение сроков полевых работ (на основе астрономических наблюдений и вычислений), подготовка необходимого количества посевных материалов и подсчет собранного урожая требовали серьезных математических знаний.

1. Показательные уравнения

Показательными уравнениями и неравенствами считают такие уравнения и неравенства, в которых неизвестное содержится в показателе степени.

Решение показательных уравнений часто сводится к решению уравнения ах = аb, где а > 0, а ? 1, х - неизвестное. Это уравнение имеет единственный корень х = b, так как справедлива следующая теорема:

Теорема. Если а > 0, а ? 1 и ах1 = ах2, то х1 = х2.

Обоснуем рассмотренное утверждение.

Предположим, что равенство х1 = х2 не выполняется, т.е. х1 < х2 или х1 = х2. Пусть, например, х1< х2. Тогда если а > 1, то показательная функция у = ах возрастает и поэтому должно выполняться неравенство ах1 < ах2; если 0 < а < 1, то функция убывает и должно выполняться неравенство ах1 > ах2. В обоих случаях мы получили противоречие условию ах1 = ах2.

Рассмотрим несколько задач.

Задача 1.

Решить уравнение 4 • 2х = 1.

Решение.

Запишем уравнение в виде 22 • 2х = 20 - 2х+2 = 20, откуда получаем х + 2 = 0, т.е. х = -2.

Ответ. х = -2.

Задача 2.

Решить уравнение 23х • 3х = 576.

Решение.

Так как 23х = (23) х = 8х, 576 = 242, то уравнение можно записать в виде 8х • 3х = 242 или в виде 24х = 242.

Отсюда получаем х = 2.

Ответ. х = 2.

Задача 3.

Решить уравнение 3х+1 - 2•3х - 2 = 25.

Решение.

Вынося в левой части за скобки общий множитель 3х - 2, получаем 3х - 2 • (33 - 2) = 25 - 3х - 2• 25 = 25,

откуда 3х - 2 = 1, т.е. х - 2 = 0, х = 2.

Ответ. х = 2.

Задача 4.

Решить уравнение 3х = 7х.

Решение.

Так как 7х ? 0, то уравнение можно записать в виде 3х/7х = 1, откуда (3/7) х = 1, х = 0.

Ответ. х = 0.

Задача 5.

Решить уравнение 9х - 4 • 3х - 45 = 0.

Решение.

Заменой 3х = а данное уравнение сводится к квадратному уравнению а2 - 4а - 45 = 0.

Решая это уравнение, находим его корни: а1 = 9, а2 = -5, откуда 3х = 9, 3х = -5.

Уравнение 3х = 9 имеет корень 2, а уравнение 3х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.

Ответ. х = 2.

Решение показательных неравенств часто сводится к решению неравенств ах > аb или ах < аb. Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Рассмотрим некоторые задачи.

Задача 1.

Решить неравенство 3х < 81.

Решение.

Запишем неравенство в виде 3х < 34. Так как 3 > 1, то функция у = 3х является возрастающей.

Следовательно, при х < 4 выполняется неравенство 3х < 34, а при х ? 4 выполняется неравенство 3х ? 34.

Таким образом, при х < 4 неравенство 3х < 34 является верным, а при х ? 4 - неверным, т.е. неравенство

3х < 81 выполняется тогда и только тогда, когда х < 4.

Ответ. х < 4.

Задача 2.

Решить неравенство 16х +4х - 2 > 0.

Решение.

Обозначим 4х = t, тогда получим квадратное неравенство t2 + t - 2 > 0.

Это неравенство выполняется при t < -2 и при t > 1.

Так как t = 4х, то получим два неравенства 4х < -2, 4х > 1.

Первое неравенство не имеет решений, так как 4х > 0 при всех х € R.

Второе неравенство запишем в виде 4х > 40, откуда х > 0.

Ответ. х > 0.

Задача 3.

Графически решить уравнение (1/3) х = х - 2/3.

Решение.

1) Построим графики функций у = (1/3) х и у = х - 2/3.

2) Опираясь на наш рисунок, можно сделать вывод, что графики рассмотренных функций пересекаются в точке с абсциссой х ? 1. Проверка доказывает, что

х = 1 - корень данного уравнения:

(1/3) 1 = 1/3 и 1 - 2/3 = 1/3.

Иными словами, мы нашли один из корней уравнения.

3) Найдем другие корни или докажем, что таковых нет. Функция (1/3) х убывающая, а функция у = х - 2/3 возрастающая. Следовательно, при х > 1 значения первой функции меньше 1/3, а второй - больше 1/3; при х < 1, наоборот, значения первой функции больше 1/3, а второй - меньше 1/3. Геометрически это означает, что графики этих функций при х > 1 и х < 1 «расходятся» и потому не могут иметь точек пересечения при х ? 1.

Ответ. х = 1.

! Заметим, что из решения этой задачи, в частности, следует, что неравенство (1/3) х > х - 2/3 выполняется при х < 1, а неравенство (1/3) х < х - 2/3 - при х > 1.

логарифм уравнение неравенство математический

2. Логарифмы

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма т.е. идея выражать числа в виде степени одного и того же основания принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером (1550-1617) и швейцарцем Иобстом Бюрги (1552-1632) Первым опубликовал работу Непер в 1614 г. под названием «Описание удивительной таблицы логарифмов» теория логарифмов Непера была дана в достаточно полном объёме способ вычисления логарифмов дан наиболее простой поэтому заслуги Непера в изобретении логарифмов больше чем у Бюрги. Бюрги работал над таблицами одновременно с Непером но долгое время держал их в секрете и опубликовал лишь в 1620 г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм» который в переводе с греческого - «соотнесённые числа» взятые одно из арифметической прогресси а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие обратное возведению в степень он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления теория их проще чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины наверное еще не было ни монет ни кошельков. Но зато были кучи а также горшки корзины которые прекрасно подходили на роль тайников-хранилищ вмещающих неизвестное количество предметов. В древних математических задачах Междуречья Индии Китая Греции неизвестные величины выражали число павлинов в саду количество быков в стаде совокупность вещей учитываемых при разделе имущества. Хорошо обученные науке счета писцы чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!» «Делай так!» «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) - собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач получившим широкую известность стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата - «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») - со временем превратилось в хорошо знакомое всем слово «алгебра» а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Простейшим логарифмическим уравнением является уравнение вида

loga x = b. (1)

Утверждение 1. Если a > 0 a ? 1 уравнение (1) при любом действительном b имеет единственное решение x = ab.

Пример 1. Решить уравнения:

a) log2 x = 3 b) log3 x = -1 c)

Решение. Используя утверждение 1 получим a) x = 23 или x = 8; b) x = 3-1 или x = 1 /3; c) или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0 a ? 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

loga №1 ·№2 = loga №1 + loga №2 (a > 0 a ? 1 №1 > 0 №2 > 0).

Замечание. Если №1 ·№2 > 0 тогда свойство P2 примет вид

loga №1 ·№2 = loga |№1 | + loga |№2 | (a > 0 a ? 1 №1 ·№2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0 a ? 1 №1 > 0 №2 > 0).

Замечание. Если (что равносильно №1 №2 > 0) тогда свойство P3 примет вид

(a > 0 a ? 1 №1 №2 > 0).

Размещено на Allbest.ru

...

Подобные документы

  • Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением. Свойства логарифмической функции, методы решения уравнений и неравенств. Использование свойств логарифма. Решение показательных уравнений.

    курсовая работа [265,0 K], добавлен 12.10.2010

  • Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств. Степенные и показательные функции и их свойства. Опыт проведения занятий со школьниками по теме: "Решение показательно-степенных уравнений и неравенств".

    дипломная работа [595,4 K], добавлен 24.11.2007

  • Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.

    реферат [118,9 K], добавлен 31.01.2009

  • Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.

    контрольная работа [122,1 K], добавлен 09.03.2011

  • Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.

    контрольная работа [209,4 K], добавлен 15.12.2011

  • Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.

    курсовая работа [1,4 M], добавлен 07.09.2010

  • Характеристика видов математических уравнений - алгебраических и трансцендентных, их сравнение и отличительные особенности. Возможности метода замены неизвестного при решении алгебраических уравнений, применение в стандартных и нестандартных ситуациях.

    контрольная работа [246,3 K], добавлен 21.09.2010

  • Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.

    курсовая работа [942,4 K], добавлен 21.12.2009

  • Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.

    курсовая работа [235,2 K], добавлен 01.02.2015

  • Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.

    курсовая работа [124,0 K], добавлен 11.12.2002

  • Системы линейных уравнений. Функции: понятия и определения. Комплексные числа, действия над ними. Числовые, функциональные, тригонометрические ряды. Дифференциальные уравнения. Множества, операции над ними. Теория вероятностей и математической статистики.

    учебное пособие [4,7 M], добавлен 29.10.2013

  • Уравнения Фредгольма и их свойства как классический пример интегральных уравнений с постоянными пределами интегрирования, их формы и степени, порядок формирования и решения. Некоторые приложения интегральных уравнений. Общая схема метода квадратур.

    курсовая работа [97,2 K], добавлен 25.11.2011

  • Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.

    научная работа [47,7 K], добавлен 05.05.2010

  • Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа [23,5 K], добавлен 12.06.2011

  • Системы уравнений. Запись в виде системы. Линейное уравнение с двумя переменными. Квадратные уравнения второй степени. Упрощенное уравнение третей степени. Переменная в четвертой степени. Множество корней (решений). Способ подстановки. Способ сложения.

    реферат [96,3 K], добавлен 02.06.2008

  • Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.

    курсовая работа [86,3 K], добавлен 01.10.2011

  • Способы задания, предел и непрерывность функции. Свойства неопределенного интеграла. Понятие числового ряда и свойства сходящихся рядов. Порядок дифференциального уравнения. Случайные события и операции над ними. Классическое определение вероятности.

    учебное пособие [532,5 K], добавлен 23.01.2014

  • Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.

    презентация [316,5 K], добавлен 14.11.2014

  • Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа [1,9 M], добавлен 06.05.2010

  • Логарифмическая функция, ее основные свойства и график. Простейшие логарифмические уравнения. Логарифмо-показательные уравнения. Переход к логарифмам одного основания с использованием формулы перехода от логарифма одного основания к логарифму другого.

    курсовая работа [629,1 K], добавлен 26.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.