Тригонометрические неравенства
Ознакомление с основными этапами решения тригонометрических неравенств. Рассмотрение и анализ процесса перехода от синуса и косинуса в прямоугольном треугольнике. Исследование специфических особенностей схемы решения тригонометрических уравнений.
Рубрика | Математика |
Вид | творческая работа |
Язык | русский |
Дата добавления | 29.11.2016 |
Размер файла | 15,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Решение тригонометрических неравенств стоит в одном ряду с такими важными темами, как решение числовых неравенств и решение систем неравенств с одной переменной. Исторически сложилось, что тригонометрическим уравнениям и неравенствам уделялось особое место в школьном курсе. Еще греки, на заре человечества, считали тригонометрию важнейшей из наук, ибо геометрия - царица математики, а тригонометрия - царица геометрии. Поэтому и мы, не оспаривая древних греков, будем считать тригонометрию одним из важнейших разделов школьного курса, да и всей математической науки в целом.
С чего же начинается обучение решению тригонометрических неравенств в школе? Естественно, с самих тригонометрических функций. Сначала даются сами отношения sin x, cos x, tg x и ctg x. Делается это на конкретных примерах рассматриваемых треугольников. Затем делается важный переход от синуса и косинуса в прямоугольном треугольнике к этим же отношениям, но уже в произвольном угле. Sin и cos освобождаются от конкретной геометрической привязки и эти понятия становятся шире.
Следующим этапом введения понятий sin x, cos x, tg x и ctg x является рассмотрение функциональных зависимостей или попросту функций y = sin x, y = cos x, y = tg x и y = ctg x соответственно. На этом этапе даются все основные свойства этих функций, рассматриваются области определения и значений, промежутки знакопостоянства, и главное - графики этих функций. Анализ функции нельзя считать полным, так как еще не усвоен и не применялся аппарат дифференцирования, но для решений тригонометрических неравенств почва уже подготовлена и ребята хорошо “вооружены” теоретическими знаниями.
Наконец последний подготовительный этап “большого пути” - решение тригонометрических уравнений. Здесь отрабатываются последние нюансы, ребенок учится оперировать сложными тригонометрическими конструкциями, но главное, именно сейчас даются основные тригонометрические тождества и производные от них. Помощь этого тригонометрического аппарата трудно переоценить. Знаниями полученными здесь и сейчас ученики смогут пользоваться всю оставшуюся жизнь. Мощь блока тригонометрических тождеств поистине потрясает, так как с его помощью управляться с громоздкими, “трехэтажными” тригонометрическими выражениями становится также просто, как и с алюминиевой вилкой.
И только теперь, хорошо освоив все предыдущие разделы ученики подходят к нашей теме, а именно решение тригонометрических неравенств. Естественно начинают решение таких неравенств с самых простейших: sin x > a, sin x < a; cos x > a, cos x < a; tg x > a, tg x < a. Затем, освоив данные неравенства, постепенно переходят к более сложным неравенствам, содержащим несколько функций одновременно, содержащим разные функции в разных степенях и ко всевозможным их комбинациям.
Итак, тригонометрический круг единичного радиуса (вы можете видеть его изображение рядом). Почему его радиус взят за единицу, а не скажем за двойку или пятерку. Ответ очевиден: угол здесь изображается радиусом и отрезком оси ОХ, и если мы опустим перпендикуляр из точки пересечения радиуса с окружностью на ось ОХ, по получим прямоугольный треугольник. В тригонометрическом круге длина отрезка ОУ принята за sin x, a длина отрезка ОХ за cos x. По теореме Пифагора ОХ2 + ОУ2 = R2. Таким образом, подставив синус и косинус получим: sin2x + cos2x = 1. Вот так мы и вышли на основное тригонометрическое тождество. Именно поэтому тригонометрический круг единичного радиуса.
Как я уже сказала, мы, с помощью тригонометрических тождеств, приводим неравенство к простейшему виду, а затем решаем его используя тригонометрический круг или график. Для успешного решения необходимо также знать следующее:
О косинусе можно сказать следующее:
Схема решения тригонометрических уравнений. Основная схема, которой мы будем руководствоваться при решении тригонометрических уравнений следующая: тригонометрический неравенство синус косинус
решение заданного уравнения сводится к решению элементарных уравнений. Средства решения - преобразования, разложения на множители, замена неизвестных. Ведущий принцип - не терять корней. Это означает, что при переходе к следующему уравнению (уравнениям) мы не опасаемся появления лишних (посторонних) корней, а заботимся лишь о том, чтобы каждое последующее уравнение нашей "цепочки" (или совокупность уравнений в случае ветвления) являлось следствием предыдущего. Одним из возможных методов отбора корней является проверка. Сразу заметим, что в случае тригонометрических уравнений трудности, связанные с отбором корней, с проверкой, как правило, резко возрастают по сравнению с алгебраическими уравнениями. Ведь проверять приходится серии, состоящие из бесконечного числа членов.
Особо следует сказать о замене неизвестных при решении тригонометрических уравнений. В большинстве случаев после нужной замены получается алгебраическое уравнение. Более того, не так уж и редки уравнения, которые, хотя и являются тригонометрическими по внешнему виду, по существу таковыми не являются, поскольку уже после первого шага - замены переменных - превращаются в алгебраические, а возращение к тригонометрии происходит лишь на этапе решения элементарных тригонометрических уравнений.
Еще раз напомним: замену неизвестного следует делать при первой возможности, получившееся после замены уравнение необходимо решить до конца, включая этап отбора корней, а уж затем возвратится к первоначальному неизвестному.
Размещено на Allbest.ru
...Подобные документы
Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа [1,9 M], добавлен 06.05.2010Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.
курсовая работа [1,1 M], добавлен 21.12.2009Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.
учебное пособие [876,9 K], добавлен 30.12.2009История развития тригонометрии, характеристика ее основных понятий и формул. Общие вопросы, цели изучения и способы определения тригонометрических функций числового аргумента в школьном курсе. Рекомендации и методы решения тригонометрических уравнений.
курсовая работа [257,7 K], добавлен 19.10.2011Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.
презентация [332,2 K], добавлен 21.09.2013Исторический обзор формирования тригонометрии как науки от древности до наших дней. Введение понятия тригонометрических функций на уроках алгебры и начал анализа по учебникам А.Г. Мордковича, М.И. Башмакова. Решения линейных дифференциальных уравнений.
дипломная работа [2,6 M], добавлен 02.07.2011Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.
реферат [2,0 M], добавлен 18.01.2011Сущность и стадии развития тригонометрии. Свойства функции синус, косинус, тангенс, котангенс. Решение простых тригонометрических уравнений. Формула Эйлера как связь между математическим анализом и тригонометрией. Применение тригонометрических вычислений.
реферат [648,7 K], добавлен 15.06.2014Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа [1,4 M], добавлен 07.09.2010Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.
курсовая работа [124,0 K], добавлен 11.12.2002Характеристика тригонометрических понятий. Свойства тригонометрических функций, особенности их практического применения в электротехнике. Исследование электрических сигналов путем визуального наблюдения графика сигнала на экране с помощью осциллографа.
презентация [287,9 K], добавлен 28.05.2016Углы и их измерение. Соответствие между углами и числовым рядом. Геометрический смысл тригонометрических функций. Свойства тригонометрических функций. Основное тригонометрическое тождество и следствия из него. Универсальная тригонометрическая подстановка.
учебное пособие [1,4 M], добавлен 18.04.2012Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.
реферат [118,9 K], добавлен 31.01.2009Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.
курсовая работа [942,4 K], добавлен 21.12.2009Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.
курсовая работа [235,2 K], добавлен 01.02.2015Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.
курсовая работа [166,4 K], добавлен 11.01.2004Применение метода интервалов для решения неравенств. Формула перехода от простейшего логарифмического неравенства к двойному. Формула решения тригонометрического уравнения. Нахождение множества всех первообразных функции f(x) на области определения.
контрольная работа [11,3 K], добавлен 03.06.2010Ознакомление с основными свойствами линейных дифференциальных уравнений первого, второго и n-го порядков с постоянными коэффициентами. Рассмотрение методов решения однородных и неоднородных уравнений и применения их при решении физических задач.
дипломная работа [181,3 K], добавлен 18.09.2011Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.
шпаргалка [2,2 M], добавлен 29.06.2010Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.
контрольная работа [241,6 K], добавлен 19.03.2011