Из истории логарифма

Понятие, обозначение и свойства логарифма. История возникновения, развития и использования системы логарифмов от древневавилонской математики и до Нового времени. Особенности вещественных и комплексных логарифмов, их приложения и логарифмических таблиц.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 23.12.2016
Размер файла 767,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственное автономное профессиональное образовательное учреждение

Новочебоксарский политехнический техникум

Министерства образования и молодежной политики Чувашской Республики

Реферат

на тему: Из истории логарифма

Выполнила:

Андреева А.И.

Новочебоксарск-2016

Содержание

Введение

1. История логарифмов

2. Вещественный логарифм

3. Комплексный логарифм

4. Логарифмические таблицы

5. Приложения логарифмов

Заключение

Введение

Логарифмом положительного числа N по основанию (b > 0, b1)называется показатель степени x , в которую нужно возвести b, чтобы получить N .

Обозначение логарифма:

Основные свойства логарифмов:

1) log b = 1 , так как b 1 = b .b

2) log 1 = 0 , так как b 0 = 1 .b

3) Логарифм произведения равен сумме логарифмов сомножителей:

log ( ab ) = log a + log b .

4) Логарифм частного равен разности логарифмов делимого и делителя: log ( a / b ) = log a - log b .

5) Логарифм степени равен произведению показателя степени на логарифм её основания: log ( b k ) = k · log b .

Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак логарифма:

Два последних свойства можно объединить в одно:

7) Формула модуля перехода (т.е. перехода от одного основания логарифма к другому основанию):

В частном случае при N = a имеем:

1. История логарифмов

Принцип, лежащий в основе любой системы логарифмов, известен очень давно и может быть прослежен вглубь истории вплоть до древневавилонской математики (около 2000 до н.э.).

В те времена интерполяция между табличными значениями целых положительных степеней целых чисел использовалась для вычисления сложных процентов.

Гораздо позже Архимед (287-212 до н.э.) воспользовался степенями числа 108 для нахождения верхнего предела числа песчинок, необходимого для того, чтобы целиком заполнить известную в те времена Вселенную. Архимед обратил внимание на свойство показателей степеней, лежащее в основе эффективности логарифмов: произведение степеней соответствует сумме показателей степеней.

В конце Средних веков и начале Нового времени математики все чаще стали обращаться к соотношению между геометрической и арифметической прогрессиями. М.Штифель в своем сочинении Арифметика целых чисел (1544) привел таблицу положительных и отрицательных степеней числа 2.

Штифель заметил, что сумма двух чисел в первой строке (строке показателей степени) равна показателю степени двойки, отвечающему произведению двух соответствующих чисел в нижней строке (строке степеней).

В связи с этой таблицей Штифель сформулировал четыре правила, эквивалентных четырем современным правилам операций над показателями степеней или четырем правилам действий над логарифмами: сумма в верхней строке соответствует произведению в нижней строке; вычитание в верхней строке соответствует делению в нижней строке; умножение в верхней строке соответствует возведению в степень в нижней строке; деление в верхней строке соответствует извлечению корня в нижней строке.

Сам термин «ЛОГАРИФМ» предложил Дж. Непер; он возник из сочетания греческих слов logos (здесь -- отношение) и arithmos (число),которое означало “число отношений”.

Логарифмы с основанием ввел учитель математики Спейдел. Слово основание заимствовано из теории о степенях и перенесено в теорию логарифмов Эйлером. Глагол “логарифмировать” появился в 19 веке у Коппе. Коши первый предложил ввести различные знаки для десятичных и натуральных логарифмов. Обозначения, близкие к современным ввел немецкий математик Прингсхейм в 1893 году. Именно он обозначал логарифм натурального числа через ln. Определение логарифма как показателя степени данного основания можно найти у Валлиса (1665 год), Бернулли (1694 год).

В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Descriptio). В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1'. Термин логарифм, предложенный Непером, утвердился в науке.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение; например, логарифм синуса он определил следующим образом

Логарифм данного синуса есть число, которое арифметически возрастало всегда с той же скоростью, с какой полный синус начал геометрически убывать.

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов -- незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования -- как операции, обратной возведению в степень -- впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке.

В книге «Введение в анализ бесконечных» (1748) Эйлер дал современные определения как показательной, так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

2. Вещественный логарифм

Логарифм вещественного числа logab имеет смысл при .

Наиболее широкое применение нашли следующие виды логарифмов.

· Десятичные: , основание: число 10.

· Натуральные: , основание: e (число Эйлера).

· Двоичные: или , основание: число 2. Они применяются в теории информации и информатике.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию, например:. Эта функция определена в правой части числовой прямой: x > 0, непрерывна и дифференцируема там (см. рис. 1).

По-видимому, правила, аналогичные правилам Штифеля, привели Дж.Непера к формальному введению первой системы логарифмов в сочинении Описание удивительной таблицы логарифмов, опубликованном в 1614 году; в нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1'. Термин логарифм, предложенный Непером, утвердился в науке.

Но мысли Непера были заняты проблемой превращения произведений в суммы еще с тех пор, как более чем за десять лет до выхода своего сочинения Непер получил из Дании известие о том, что в обсерватории Тихо Браге его ассистенты располагают методом, позволяющим превращать произведения в суммы. Метод, о котором говорилось в полученном Непером сообщении, был основан на использовании тригонометрических формул типа

,

поэтому таблицы Непера состояли главным образом из логарифмов тригонометрических функций. Хотя понятие основания не входило в явном виде в предложенное Непером определение, роль, эквивалентную основанию системы логарифмов, в его системе играло число (1 - 10-7)ґ107, приближенно равное 1/e. логарифм вещественный комплексный

Непер (понятия функции тогда ещё не было) определил логарифм кинематически , сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением:

dx/x = -dy/M

где M -- масштабный множитель, введенный для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000 = 107.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом следующим образом:

^ LogNap(x) = M (ln M - ln x).

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль - этого и добивался Непер своим определением. LogNap(0) = ?.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например

^ LogNap(ab) = LogNap(a) + LogNap(b) - LogNap (1).

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.

Независимо от Непера и почти одновременно с ним система логарифмов, довольно близкая по типу, была изобретена и опубликована Й. Бюрги в Праге, издавшем в 1620 году Таблицы арифметической и геометрической прогрессий. Это были таблицы антилогарифмов по основанию (1 + 10-4) ґ104, достаточно хорошему приближению числа e.

В системе Непера логарифм числа 107 был принят за нуль, и по мере уменьшения чисел логарифмы возрастали. Когда Г. Бриггс (1561-1631) навестил Непера, оба согласились, что было бы удобнее использовать в качестве основания число 10 и считать логарифм единицы равным нулю. Тогда с увеличением чисел их логарифмы возрастали бы. Таким образом, мы получили современную систему десятичных логарифмов, таблицу которых Бриггс опубликовал в своем сочинении Логарифмическая арифметика (1620). Логарифмы по основанию e, хотя и не совсем те, которые были введены Непером, часто называют неперовыми. Термины «характеристика» и «мантисса» были предложены Бриггсом.

Первые логарифмы в силу исторических причин использовали приближения к числам 1/e и e. Несколько позднее идею натуральных логарифмов стали связывать с изучением площадей под гиперболой xy = 1. В 17 в. было показано, что площадь, ограниченная этой кривой, осью x и ординатами x = 1 и x = a (на рисунке эта область покрыта более жирными и редкими точками) возрастает в арифметической прогрессии, когда a возрастает в геометрической прогрессии. Именно такая зависимость возникает в правилах действий над экспонентами и логарифмами. Это дало основание называть неперовы логарифмы «гиперболическими логарифмами».

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов - незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования - как операции, обратной возведению в степень - впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. В книге Введение в анализ бесконечных(1748) Эйлер дал современные определения как показательной, так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма. Таким образом, благодаря трудам Эйлера, сформировалась концепция логарифмической функции.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

3. Комплексный логарифм

Для комплексных чисел логарифм определяется так же, как вещественный. На практике используется почти исключительно натуральный комплексный логарифм, который обозначим и определим как множество всех комплексных чисел z таких, что e z = w . Комплексный логарифм существует для любого , и его вещественная часть определяется однозначно, в то время как мнимая имеет бесконечное множество значений. По этой причине его называют многозначной функцией. Если представить w в показательной форме:

,

то логарифм находится по формуле:

Здесь - Речевой логарифм, r = | w | , K - произвольное целое число. Значение, получаемое при k = 0 , называется главным значением комплексного натурального логарифма; принято принимать в нем значение аргумента в интервале (- Р, р] . Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается.

Иногда через также обозначают значение логарифма, что лежит не на главной ветви.

Из формулы следует:

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII-XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось - в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века - между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x). Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747-1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

4. Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование, то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n.

Например, lg8314,63 = lg8,31463 + 3. Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (1614), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (1620). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже - с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега (1783) появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого.

В СССР выпускались несколько сборников таблиц логарифмов:

1) Брадис В.М. Четырехзначные математические таблицы. 44-е издание, М., 1973. - Таблицы Брадиса использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.

2) Вега Г. Таблицы семизначных логарифмов, 4-е издание, М., 1971. -Профессиональные сборники для точных вычислений.

3) Пятизначные таблицы натуральных значений тригонометрических величин, их логарифмов и логарифмов чисел, 6 изд., М.: Наука, 1972.

4) Таблицы натуральных логарифмов, 2-е издание, в 2 томах, М.: Наука, 1971.

5. Приложения логарифмов

Логарифмы первоначально использовались исключительно для упрощения вычислений, и это их приложение до сих пор остается одним из самых главных. Вычисление произведений, частных, степеней и корней облегчается не только благодаря широкой доступности опубликованных таблиц логарифмов, но и благодаря использованию т.н. логарифмической линейки - вычислительного инструмента, принцип работы которого основан на свойствах логарифмов. Линейка снабжена логарифмическими шкалами, т.е. расстояние от числа 1 до любого числа x выбрано равным log x; сдвигая одну шкалу относительно другой, можно откладывать суммы или разности логарифмов, что дает возможность считывать непосредственно со шкалы произведения или частные соответствующих чисел. Воспользоваться преимуществами представления чисел в логарифмическом виде позволяет и т.н. логарифмическая бумага для построения графиков (бумага с нанесенными на нее по обеим осям координат логарифмическими шкалами). Если функция удовлетворяет степенному закону вида y = kxn, то ее логарифмический график имеет вид прямой, так как

log y = log k + n log x

- уравнение, линейное относительно log y и log x. Наоборот, если логарифмический график какой-нибудь функциональной зависимости имеет вид прямой, то эта зависимость - степенная. Полулогарифмическая бумага (у которой ось ординат имеет логарифмическую шкалу, а ось абсцисс - равномерную шкалу) удобна в тех случаях, когда требуется идентифицировать экспоненциальные функции. Уравнения вида y = kbrx возникают всякий раз, когда некая величина, такая как численность населения, количество радиоактивного материала или банковский баланс, убывает или возрастает со скоростью, пропорциональной имеющемуся в данный момент количеству жителей, радиоактивного вещества или денег. Если такую зависимость нанести на полулогарифмическую бумагу, то график будет иметь вид прямой.

Логарифмическая функция возникает в связи с самыми разными природными формами. По логарифмическим спиралям выстраиваются цветки в соцветиях подсолнечника, закручиваются раковины моллюска Nautilus, рога горного барана и клювы попугаев. Все эти природные формы могут служить примерами кривой, известной под названием логарифмической спирали, потому что в полярной системе координат ее уравнение имеет вид

r = aebq

или

ln r = ln a + bq

Такую кривую описывает движущаяся точка, расстояние от полюса которой растет в геометрической прогрессии, а угол, описываемый ее радиусом-вектором - в арифметической. Повсеместность такой кривой, а следовательно и логарифмической функции, хорошо иллюстрируется тем, что она возникает в столь далеких и совершенно различных областях, как контур кулачка-эксцентрика и траектория некоторых насекомых, летящих на свет.

Заключение

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, а извлечение корня степени n сводится к делению логарифма подкоренного выражения на n. Первым эту идею опубликовал в своей книге «Arithmetica integra» Михаэль Штифель, который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

Размещено на Allbest.ru

...

Подобные документы

  • Общая терминология и история изобретения логарифма. Характеристики натурального и обычного логарифма, определение дробного числа и мантиссы. Таблицы и свойства натуральных логарифмов. Логарифмическая и экспоненциальная кривая, понятие функции логарифма.

    реферат [211,2 K], добавлен 05.12.2011

  • Определение и назначение логарифмов, история их изобретения. Непер - изобретатель первых логарифмических таблиц. Свойства логарифмов, основные и дополнительные соотношения. Примеры выполнения некоторых заданий по вычислению логарифмов и таблица ответов.

    презентация [687,4 K], добавлен 01.03.2012

  • Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Введение логарифмов математиками Дж. Непером и Иостом Бюрги. Логарифмические свойства и тождества. Различие таблиц натуральных и обычных лагорифмов.

    презентация [370,0 K], добавлен 26.11.2012

  • Краткие биографические данные от Джоне Непере - шотландском математике, изобретателе логарифмов и замечательного вычислительного инструмента - таблицы логарифмов. Математические заслуги Брадиса; его Таблицы. Изобретение первой логарифмической линейки.

    презентация [5,3 M], добавлен 30.10.2013

  • Характерные особенности логарифмов, их свойства. Методика определения логарифма числа по основанию a. Основные свойства логарифмической функции. Множество всех действительных чисел R. Анализ функций возрастания и убывания на всей области определения.

    презентация [796,3 K], добавлен 06.02.2012

  • История открытия логарифмов. Определение логарифма. Натуральные, десятичные, двоичные логарифмы и их применение в теории информации и информатике. Логарифмические функции и их графики. Логарифмическая спираль. Риманова поверхность. Свойства функции.

    презентация [316,0 K], добавлен 20.02.2011

  • Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.

    презентация [171,6 K], добавлен 17.09.2013

  • Шотландский барон Джон Непер как первый изобретатель логарифмов. Пропорции Непера для логарифмирования. Применение логарифмов Кеплером в Марбурге в 1624-1625 гг. Таблица положительных, отрицательных степеней числа 2. Гиперболические логарифмы, применение.

    доклад [120,5 K], добавлен 24.12.2011

  • Исторические аналоги современных определений логарифма как средства вычислений. Интегральные методы XVII века, нахождение площади под гиперболой. Современное интегральное определение логарифма. Определение элементарных функций с помощью интеграла.

    курсовая работа [255,2 K], добавлен 04.09.2014

  • Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением. Свойства логарифмической функции, методы решения уравнений и неравенств. Использование свойств логарифма. Решение показательных уравнений.

    курсовая работа [265,0 K], добавлен 12.10.2010

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

  • Главные свойства логарифмов. Общий вид формулы перехода к другому основанию. Возрастание логарифмической функции с основанием 4 и 2, убывание с основанием 0,3. Практический пример решения первого и второго неравенства системы, обоснование результата.

    презентация [273,6 K], добавлен 29.10.2013

  • История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.

    контрольная работа [50,4 K], добавлен 10.10.2014

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация [435,9 K], добавлен 16.12.2011

  • Ненулевые элементы поля. Таблица логарифма Якоби. Матрица системы линейных уравнений. Перепроверка по методу Евклида. Формула быстрого возведения. Определение матрицы методом Гаусса. Собственные значений матрицы. Координаты собственного вектора.

    контрольная работа [192,1 K], добавлен 20.12.2012

  • Логарифмическая функция, ее основные свойства и график. Простейшие логарифмические уравнения. Логарифмо-показательные уравнения. Переход к логарифмам одного основания с использованием формулы перехода от логарифма одного основания к логарифму другого.

    курсовая работа [629,1 K], добавлен 26.11.2013

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Определение периметра треугольника, наименьшего и наибольшего значений функции. Вычисление средней температуры. Проведение вычислений логарифмов. Нахождение угла между прямой и плоскостью. Вычисление объема конуса. Коэффициент теплового расширения.

    контрольная работа [15,5 K], добавлен 27.12.2013

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат [27,6 K], добавлен 11.09.2010

  • Предмет, метод и история возникновения статистики. Построение таблиц, понятие абсолютных и относительных величин и правила действия с ними. Сущность вариации, свойства дисперсии и расчет индексов. Особенности корреляционно-регрессионного анализа.

    курс лекций [302,0 K], добавлен 14.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.