Понятие и виды средних величин

Средняя величина как обобщающий показатель, который погашает индивидуальные различия значений статистических данных, позволяя сравнивать разные совокупности между собой. Методика расчета критериального значения квадратического коэффициента вариации.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 28.12.2016
Размер файла 48,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Средняя величина - это обобщающий показатель статистической совокупности, который погашает индивидуальные различия значений статистических величин, позволяя сравнивать разные совокупности между собой.

Существует 2 класса средних величин: степенные и структурные.

К структурным средним относятся мода и медиана, но наиболее часто применяются степенные средние различных видов.

1. Степенные средние величины

Степенные средние могут быть простыми и взвешенными.

Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле:

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы:

где X - значения отдельных статистических величин или середин группировочных интервалов;

m - показатель степени, от значения которого зависят следующие виды степенных средних величин:

при m = -1 средняя гармоническая;

при m = 0 средняя геометрическая;

при m = 1 средняя арифметическая;

при m = 2 средняя квадратическая;

при m = 3 средняя кубическая.

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида, которые будут далее подробно рассмотрены.

Средняя арифметическая.

Средняя арифметическая - это самая часто используемая средняя величина, которая получается, если подставить в общую формулу m=1. Средняя арифметическая простая имеет следующий вид:

где X - значения величин, для которых необходимо рассчитать среднее значение; N - общее количество значений X (число единиц в изучаемой совокупности).

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической простой: (3+4+4+5)/4 = 16/4 = 4.

Средняя арифметическая взвешенная имеет следующий вид:

где f - количество величин с одинаковым значением X (частота).

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической взвешенной: (3*1 + 4*2 + 5*1)/4 = 16/4 = 4.

Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X.

Например, на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет. Тогда рассчитаем средний стаж работников по формуле средней арифметической взвешенной, приняв в качестве X середины интервалов стажа (2, 4 и 6 лет):

(2*10+4*20+6*5)/(10+20+5) = 3,71 года.

Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин. Рассмотрим такие случаи далее.

Средняя гармоническая.

Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:

Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой:

Например, автомобиль ехал из пункта А в пункт Б со скоростью 90 км/ч, а обратно - со скоростью 110 км/ч. Для определения средней скорости применим формулу средней гармонической простой, так как в примере дано расстояние w1=w2 (расстояние из пункта А в пункт Б такое, же как и из Б в А), которое равно произведению скорости (X) на время (f). Средняя скорость = (1+1)/(1/90+1/110) = 99 км/ч.

Средняя геометрическая.

Средняя геометрическая применяется при определении средних относительных изменений, о чем сказано в теме Ряды динамики. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X.

Например, в период с 2005 по 2008 годы индекс инфляции в России составлял: в 2005 году - 1,109; в 2006 - 1,090; в 2007 - 1,119; в 2008 - 1,133. Так как индекс инфляции - это относительное изменение (индекс динамики), то рассчитывать среднее значение нужно по средней геометрической: (1,109*1,090*1,119*1,133)(1/4) = 1,1126, то есть за период с 2005 по 2008 ежегодно цены росли в среднем на 11,26%. Ошибочный расчет по средней арифметической дал бы неверный результат 11,28%.

Средняя квадратическая.

Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений.

Главной сферой применения квадратической средней является измерение вариации значений X, о чем пойдет речь позднее в этой лекции.

Средняя кубическая.

Средняя кубическая применяется крайне редко, например, при расчете индексов нищеты населения для развивающихся стран (ИНН-1) и для развитых (ИНН-2), предложенных и рассчитываемых ООН.

Структурные средние величины.

К наиболее часто используемым структурным средним относятся статистическая мода и статистическая медиана.

Статистическая мода.

Статистическая мода - это наиболее часто повторяющееся значение величины X в статистической совокупности.

Если X задан дискретно, то мода определяется без вычисления как значение признака с наибольшей частотой. В статистической совокупности бывает 2 и более моды, тогда она считается бимодальной (если моды две) или мультимодальной (если мод более двух), и это свидетельствует о неоднородности совокупности.

Например, на предприятии работает 16 человек: 4 из них - со стажем 1 год, 3 человека - со стажем 2 года, 5 - со стажем 3 года и 4 человека - со стажем 4 года. Таким образом, модальный стаж Мо=3 года, поскольку частота этого значения максимальна (f=5).

Если X задан равными интервалами, то сначала определяется модальный интервал как интервал с наибольшей частотой f. Внутри этого интервала находят условное значение моды по формуле:

где Мо - мода;

ХНМо - нижняя граница модального интервала;

hМо - размах модального интервала (разность между его верхней и нижней границей);

fМо - частота модального интервала;

fМо-1 - частота интервала, предшествующего модальному;

fМо+1 - частота интервала, следующего за модальным.

Например, на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет. Рассчитаем модальный стаж работы в модальном интервале от 3 до 5 лет: Мо = 3 + 2*(20-10)/(2*20-10-5) = 3,8 (года).

Если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

Статистическая медиана.

Статистическая медиана - это значение величины X, которое делит упорядоченную по возрастанию или убыванию статистическую совокупность на 2 равных по численности части. В итоге у одной половины значение больше медианы, а у другой - меньше медианы.

Если X задан дискретно, то для определения медианы все значения нумеруются от 0 до N в порядке возрастания, тогда медиана при четном числе N будет лежать посередине между X c номерами 0,5N и (0,5N+1), а при нечетном числе N будет соответствовать значению X с номером 0,5(N+1).

Например, имеются данные о возрасте студентов-заочников в группе из 10 человек - X: 18, 19, 19, 20, 21, 23, 23, 25, 28, 30 лет. Эти данные уже упорядочены по возрастанию, а их количество N=10 - четное, поэтому медиана будет находиться между X с номерами 0,5*10=5 и (0,5*10+1)=6, которым соответствуют значения X5=21 и X6=23, тогда медиана: Ме = (21+23)/2 = 22 (года).

Если X задан в виде равных интервалов, то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:

где Ме - медиана;

ХНМе - нижняя граница медианного интервала;

hМе - размах медианного интервала (разность между его верхней и нижней границей);

fМе - частота медианного интервала;

fМе-1 - сумма частот интервалов, предшествующих медианному.

В ранее рассмотренном примере при расчете модального стажа (на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет) рассчитаем медианный стаж. Половина общего числа работников составляет (10+20+5)/2 = 17,5 и находится в интервале от 3 до 5 лет, а в первом интервале до 3 лет - только 10 работников, а в первых двух - (10+20)=30, что больше 17,5, значит интервал от 3 до 5 лет - медианный. Внутри него определяем условное значение медианы: Ме = 3+2*(0,5*30-10)/20 = 3,5 (года).

Также как и в случае с модой, при определении медианы если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

2. Показатели вариации

Вариация - это различие значений величин X у отдельных единиц статистической совокупности. Для изучения силы вариации рассчитывают следующие показатели вариации: размах вариации, среднее линейное отклонение, линейный коэффициент вариации, дисперсия, среднее квадратическое отклонение, квадратический коэффициент вариации.

Размах вариации.

Размах вариации - это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

Cреднее линейное отклонение.

Cреднее линейное отклонение - это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой - получим среднее линейное отклонение простое:

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4. Рассчитаем среднее линейное отклонение простое: Л = (|3-4|+|4-4|+|4-4|+|5-4|)/4 = 0,5.

Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной - получим среднее линейное отклонение взвешенное:

Вернемся к примеру про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4 и среднее линейное отклонение простое = 0,5. Рассчитаем среднее линейное отклонение взвешенное: Л = (|3-4|*1+|4-4|*2+|5-4|*1)/4 = 0,5.

Линейный коэффициент вариации.

Линейный коэффициент вариации - это отношение среднего линейного отклонение к средней арифметической:

С помощью линейного коэффициента вариации можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, линейный коэффициент вариации составит 0,5/4 = 0,125 или 12,5%.

Дисперсия.

Дисперсия - это средний квадрат отклонений значений X от среднего арифметического значения. Дисперсию можно рассчитывать по формуле средней арифметической простой - получим дисперсию простую:

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил оценки: 3, 4, 4 и 5, ранее уже была рассчитана средняя арифметическая = 4. Тогда дисперсия простая Д = ((3-4)2+(4-4)2+(4-4)2+(5-4)2)/4 = 0,5.

Если исходные данные X сгруппированы (имеются частоты f), то расчет дисперсии выполняется по формуле средней арифметической взвешенной - получим дисперсию взвешенную:

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию взвешенную: Д = ((3-4)2*1+(4-4)2*2+(5-4)2*1)/4 = 0,5. Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию методом разности средней квадратов и квадрата средней: Д = (32*1+42*2+52*1)/4-42 = 16,5-16 = 0,5. Если значения X - это доли совокупности, то для расчета дисперсии используют частную формулу дисперсии доли:

.

Cреднее квадратическое отклонение.

Выше уже было рассказано о формуле средней квадратической, которая применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:

Еще проще можно найти среднее квадратическое отклонение, если предварительно рассчитана дисперсия, как корень квадратный из нее:

В примере про студента, в котором выше рассчитали дисперсию, найдем среднее квадратическое отклонение как корень квадратный из нее: .

Квадратический коэффициент вариации.

Квадратический коэффициент вариации - это самый популярный относительный показатель вариации:

статистический квадратический вариация

Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 - вариация считает слабой, а если больше 0,333 - сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной, а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности.

В примере про студента, в котором выше рассчитали среднее квадратическое отклонение, найдем квадратический коэффициент вариации V = 0,707/4 = 0,177, что меньше критериального значения 0,333, значит вариация слабая и равна 17,7%.

Литература

1. Елисеева И.И. Общая теория статистики: учебник для вузов / И.И. Елисеева, М.М. Юзбашев; под ред. И.И. Елисеевой. - М.: Финансы и статистика, 2009. - 656с.

2. Ефимова М.Р. Практикум по общей теории статистики: учебное пособие для вузов / М.Р. Ефимова и др. - М.: Финансы и статистика, 2007. - 368с.

3. Мелкумов Я.С. Социально-экономическая статистика: учебно-методическое пособие. - М.: ИМПЭ-ПАБЛИШ, 2007. - 200с.

4. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: учебник для вузов / О.Э. Башина и др.; под ред. О.Э. Башиной, А.А. Спирина. - М.: Финансы и статистика, 2008. - 440с.

5. Салин В.Н. Курс теории статистики для подготовки специалистов финансово-экономического профиля: учебник / В.Н. Салин, Э.Ю. Чурилова. - М.: Финансы и статистика, 2007. - 480с.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность и значение средних величин как обобщающая характеристика изучаемого признака в совокупности. Теория Кетле: причины, определяющие состояние общего процесса, и индивидуальные (случайные). Категории и виды средних величин, способы их вычисления.

    контрольная работа [20,7 K], добавлен 23.07.2009

  • Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.

    презентация [92,4 K], добавлен 01.11.2013

  • Понятие математической статистики как науки о математических методах систематизации и использования статистических данных для научных и практических выводов. Точечные оценки параметров статистических распределений. Анализ вычисления средних величин.

    курсовая работа [215,1 K], добавлен 13.12.2014

  • Числовые характеристики непрерывных величин. Точечные оценки параметров распределения. Статистическая проверка гипотез. Сравнение средних известной и неизвестной точности измерений. Критерий Хи-квадрат для проверки гипотезы о виде распределения.

    курсовая работа [79,0 K], добавлен 23.01.2012

  • Фактор как одна из случайных величин, зависимость между которыми анализируется. Дисперсия как характеристика общей изменчивости значений У. Математическое ожидание как центр группирования значений У при Х=а. Нахождение коэффициента детерминации.

    презентация [115,4 K], добавлен 01.11.2013

  • Понятие комплекса случайных величин, закона их распределения и вероятностной зависимости. Числовые характеристики случайных величин: математическое ожидание, момент, дисперсия и корреляционный момент. Показатель интенсивности связи между переменными.

    курсовая работа [2,4 M], добавлен 07.02.2011

  • Измерения физических величин, их классификация и оценка истинного значения; обработка результатов. Понятие доверительного интервала: распределение Гаусса и Стьюдента. Понятие случайной величины и вероятностного распределения; методы расчета погрешностей.

    методичка [459,2 K], добавлен 18.12.2014

  • Понятие, виды, функции средней величины и значение метода средних величин статистике. Особенности уравнения тренда на основе линейной зависимости. Парные и частные коэффициенты корреляции. Сущность предела нахождения среднего процента содержания влаги.

    контрольная работа [42,8 K], добавлен 07.12.2008

  • Первичный анализ и основные характеристики статистических данных. Точечные оценки параметров распределения. Доверительные интервалы для неизвестного математического ожидания и для среднего квадратического отклонения. Проверка статистических гипотез.

    дипломная работа [850,9 K], добавлен 18.01.2016

  • Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.

    курсовая работа [582,0 K], добавлен 13.11.2012

  • Математические методы систематизации и использования статистических данных для научных и практических выводов. Закон распределения дискретной случайной величины. Понятие генеральной совокупности. Задачи статистических наблюдений. Выборочное распределение.

    реферат [332,8 K], добавлен 10.12.2010

  • Математическая статистика как наука о математических методах систематизации статистических данных, ее показатели. Составление интегральных статистических распределений выборочной совокупности, построение гистограмм. Вычисление точечных оценок параметров.

    курсовая работа [241,3 K], добавлен 10.04.2011

  • Квази-средние как обобщение классических средних величин. Квази-средние и функциональные уравнения. Решение некоторых функциональных уравнений. Характеристическое свойство квази-средних. Квази-средние и выпуклые функции.

    дипломная работа [412,7 K], добавлен 08.08.2007

  • Область определения функции, которая содержит множество возможных значений. Нахождение закона распределения и характеристик функции случайной величины, если известен закон распределения ее аргумента. Примеры определения дискретных случайных величин.

    презентация [68,7 K], добавлен 01.11.2013

  • Случайная выборка значений двух случайных величин для исследования их совместного распределения. Диаграмма рассеяния опытных данных для четырех видов распределения. Вычисление коэффициента корреляции при большом объеме выборок; проверка его значимости.

    реферат [811,7 K], добавлен 27.01.2013

  • Средняя величина как обобщенная количественная характеристика признака в статистической совокупности в конкретных условиях места и времени, ее типы и назначение, порядок вычисления. Структурные и арифметическая средние. Определение модального интервала.

    контрольная работа [52,4 K], добавлен 24.11.2010

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.

    презентация [1,4 M], добавлен 19.07.2015

  • Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

    реферат [325,3 K], добавлен 23.01.2011

  • Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.

    задача [133,0 K], добавлен 21.12.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.