Эластичность функции
Определение понятия дифференциального исчисления производной как предела отношения абсолютных приращений переменных. Эластичность взаимно обратных функций. Переход от одного основания логарифмов к другому, умножение на константу числителя и знаменателя.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 30.01.2017 |
Размер файла | 549,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Исследование экономических задач методами дифференциального исчисления. Изучение экономических систем с помощью линейных балансовых моделей, сетевое планирование и управление. Эластичность производственных функций, элементы линейного программирования.
методичка [418,9 K], добавлен 10.11.2015Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.
презентация [917,8 K], добавлен 17.03.2010Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.
контрольная работа [1,1 M], добавлен 12.11.2014Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.
курсовая работа [612,2 K], добавлен 01.06.2014Понятие производной, правила её применения, геометрический и физический смысл производной. Применение производной в науке и технике и о решении задач в этой области. Актуальность дифференциального исчисления в связи с научно-техническим прогрессом.
реферат [458,8 K], добавлен 17.05.2009Задачи, приводящие к понятию производной. Особенности определения с помощью этого основного понятия дифференциального исчисления уравнения касательной к непрерывной кривой в заданной точке, скорости, производительности труда в определенный момент времени.
презентация [263,8 K], добавлен 21.09.2013Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.
презентация [332,2 K], добавлен 21.09.2013Определение корня первого и второго многочлена, вычисление предела функции. Применение правила Лопиталя (предел отношения функций равен пределу отношения их производных). Пример использования замечательного предела, который применяется в виде равенства.
контрольная работа [95,5 K], добавлен 19.03.2015Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.
контрольная работа [153,6 K], добавлен 19.01.2010Задания на установление заданных пределов без использования правила Лопиталя. Определение точек разрыва функции и построение ее графика. Правило вычисления производной, заданной неявно. Исследование функции методами дифференциального исчисления.
контрольная работа [570,8 K], добавлен 10.10.2011Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.
презентация [246,0 K], добавлен 21.09.2013Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.
контрольная работа [233,2 K], добавлен 28.03.2014Методика и основные этапы нахождения производной функции. Исследование методами дифференциального исчисления и построение графика функции. Порядок определения экстремумов функции. Вычисление неопределенных и определенных интегралов заменой переменной.
контрольная работа [84,3 K], добавлен 01.05.2010Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.
курсовая работа [609,9 K], добавлен 09.12.2011Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.
презентация [696,5 K], добавлен 18.12.2014Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.
презентация [104,8 K], добавлен 17.09.2013Общие свойства функций. Правила дифференциального исчисления. Неопределенный и определенный интегралы, методы их вычисления. Функции нескольких переменных, производные и дифференциалы. Классические методы оптимизации. Модель потребительского выбора.
методичка [2,0 M], добавлен 07.01.2011Производная - основное понятие дифференциального исчисления, характеризующее скорость изменения функции. Исследование правил дифференцирования, которые используют при нахождении производных. Определение производной алгебраической суммы конечного числа.
презентация [175,0 K], добавлен 21.09.2013Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.
курсовая работа [166,4 K], добавлен 11.01.2004