Методы решения уравнений и неравенств с модулем

Модуль как расстояние от нуля до числа, которое выражено в единичных отрезках. Характеристика основных признаков простейших уравнений и неравенств. Исследование алгоритма раскрытия модуля неравенства в зависимости от знака подмодульного выражения.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 22.02.2017
Размер файла 48,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Типы уравнений (неравенств) и методы их решения:

I. Простейшие - уравнения и неравенства вида.

|f(x)| = a, |f(x)| < a, |f(x)| > a,

где а - любое число.

При решении простейших уравнений и неравенств исходим из определения модуля, как расстояния от нуля до числа, выраженного в единичных отрезках.

1. Рассмотрим уравнения вида |f(x)| = a:

а) Если а < 0, то решений нет, т.к. |f(x)| 0;

б) Если а = 0, то |f(x)| = 0 и f(x) = 0.

Рис. 1

в). Если |f(x)| = a, (рис. 1)

2. Рассмотрим неравенства вида |f(x)| < а ():

а) Если а < 0, то неравенство примет вид |f(x)| < а < 0. Решений нет, т.к. |f(x)| 0;

б) Если а = 0, то |f(x)| < 0. Решений нет, т.к. |f(x)| 0;

(Если неравенство |f(x)|, то |f(x)| = 0, т.к. |f(x)| 0)

Рис. 2

в) Если a > 0: (рис. 2).

Решение неравенства - множество значений f(х) «между» числами а и - а:

двойное неравенство - a < f(x) < a или (если f(x) - сложно задана).

3. Рассмотрим неравенства вида |f(x)| > а ():

а). Если а < 0, то неравенство примет вид |f(x)| , а < 0. Решение: , т.к. |f(x)| 0 > a;

б). Если а = 0, то |f(x)| > 0. Тогда , т.к. |f(x)| 0.

(|f(x)|0. Решение: (см. выше)).

Рис. 3

в) Если a > 0: (рис. 3).

|f(x)| > a Решение неравенства: множество значений х «за» числами а и - а.

Частные случаи.

|f(x)| = f(x) f(x) ? 0 Решение уравнения - решение неравенства.

|f(x)| = - f(x) f(x) ? 0.

|f(x)|=|g(x)|

II. По определению модуля.

Если в уравнении или неравенстве один модуль и функция (|f(x)| * g(x)), то решаем по определению модуля:

|f(x)|=

модуль неравенство единичный нуль

Для этого нужно рассмотреть два случая, раскрывая модуль, в зависимости от знака подмодульного выражения. Изменения происходят только в части, содержащей модуль.

Частные случаи.

Данное равенство возможно, только если . Тогда:

Только для уравнений, в которых g(x) проще f(x).

Размещено на Allbest.ru

...

Подобные документы

  • Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.

    курсовая работа [942,4 K], добавлен 21.12.2009

  • Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.

    реферат [2,0 M], добавлен 18.01.2011

  • Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.

    реферат [118,9 K], добавлен 31.01.2009

  • Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.

    курсовая работа [1,4 M], добавлен 07.09.2010

  • Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.

    курсовая работа [235,2 K], добавлен 01.02.2015

  • Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.

    контрольная работа [209,4 K], добавлен 15.12.2011

  • Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.

    курсовая работа [166,4 K], добавлен 11.01.2004

  • Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа [1,9 M], добавлен 06.05.2010

  • Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.

    курсовая работа [124,0 K], добавлен 11.12.2002

  • Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.

    контрольная работа [122,1 K], добавлен 09.03.2011

  • Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств. Степенные и показательные функции и их свойства. Опыт проведения занятий со школьниками по теме: "Решение показательно-степенных уравнений и неравенств".

    дипломная работа [595,4 K], добавлен 24.11.2007

  • Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением. Свойства логарифмической функции, методы решения уравнений и неравенств. Использование свойств логарифма. Решение показательных уравнений.

    курсовая работа [265,0 K], добавлен 12.10.2010

  • Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.

    контрольная работа [567,1 K], добавлен 21.05.2013

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Существование и способ построения фундаментального набора решений для систем, состоящих из одного или нескольких неравенств. Метод последовательного уменьшения числа неизвестных. Системы однородных и неоднородных произвольных линейных неравенств.

    курсовая работа [69,8 K], добавлен 09.12.2011

  • Классификация гиперболических уравнений в общей классификации уравнений математической физики. Классификация уравнений: волновое, интегро-дифференциальные, уравнение теплопроводности. Методы решения в зависимости от видов гиперболических уравнений.

    контрольная работа [249,3 K], добавлен 19.01.2009

  • Однородные системы линейных неравенств и выпуклые конусы. Применение симплекс-метода для отыскания опорного решения системы линейных неравенств, ее геометрический смысл. Основная задача линейного программирования. Теорема Минковского, ее доказательство.

    курсовая работа [807,2 K], добавлен 03.04.2015

  • Цели проведения урока по математике на тему "Решение неравенств с одним неизвестным", особенности разработки плана и определение формы его проведения. Алгоритм решения неравенства по вариантам, проведение проверки в парах. Подведение итогов урока.

    презентация [63,5 K], добавлен 25.06.2011

  • Нахождение длины сторон и площади треугольника, координат центра тяжести пирамиды, центра масс тетраэдра. Составление уравнений геометрического места точек, высоты, медианы, биссектрисы внутреннего угла, окружности. Построение системы линейных неравенств.

    контрольная работа [1,2 M], добавлен 13.12.2012

  • Система линейных уравнений. Общее и частные решения системы линейных уравнений. Нахождение векторного произведения. Приведение уравнения кривой второго порядка к каноническому виду. Исследование функции на непрерывность. Тригонометрическая форма числа.

    контрольная работа [128,9 K], добавлен 26.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.