Фракталы в природе

Приведение примеров сложных геометрических фигур, обладающих свойством самоподобия. Описание фрактальных свойств природных объектов: растений, морских животных, природных явлений. Рассмотрение игрушки "Матрешка" как фрактала в народном творчестве.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 15.03.2017
Размер файла 18,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Фракталы -- потрясающая красота математики в природе

Природа так загадочна, что чем больше изучаешь ее, тем больше вопросов появляется… Ночные молнии - синие «струи» ветвящихся разрядов, морозные узоры на окне, снежинки, горы, облака, кора дерева - все это выходит за рамки привычной евклидовой геометрии. Мы не можем описать камень или границы острова с помощью прямых, кружков и треугольников. И здесь нам приходят на помощь фракталы.

Фрактал - это сложная геометрическая фигура, обладающая свойством самоподобия. То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал -- это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты -- фракталами (от латинского fractus -- изломанный).

Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, - это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста.

Фрактал как природный объект - это вечное непрерывное движение, новое становление и развитие.

Фракталы встречаются всюду: в продуктах питания, в бактериях, в растениях, в животных, в горах, в небе и в воде.

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он преподавал математику в Йельском университете США. В 1977 - 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы», в которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывало наличие некого образца для копирования. Открытие Мандельброта возымело весомые последствия в развитии физики, астрономии и биологии.

Фракталы в природе

геометрический фигура фрактальный природный

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).

Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Фракталы и древние мандалы

Например, мандала для привлечения денег. Утверджают, что красный цвет работает как денежный магнит. А витиеватые узоры вам ничего не напоминают? Мне они показались очень знакомыми и я занялась исследованием мандал в качестве фрактала.

В принципе, мандала -- это геометрический символ сложной структуры, который интерпретируется как модель Вселенной, «карта космоса». Вот и первый признак фрактальности!

Их вышивают на ткани, рисуют на песке, выполняют цветными порошками и делают из металла, камня, дерева. Яркий и завораживающий вид, делает её красивым украшением полов, стен и потолков храмов в Индии. На древнем индийском языке «мандала» обозначает мистический круг взаимосвязи духовных и материальных энергий Вселенной или по-другому цветок жизни.

Мне хотелось написать обзор о фрактальных мандалах совсем небольшим, с минимумом абзацев, показав, что взаимосвязь явно существует. Однако, пытаясь найти осознать и связать информацию о фракталах и мандалах в единое целое, у меня было ощущение квантового скачка в неизвестное мне пространство.

Демонстрирую необъятность этой темы цитатой: ”Такие фрактальные композиции или мандалы могут использоваться как в виде картин, элементов дизайна жилого и рабочего помещения, носимых амулетов, в форме видеокассет, компьютерных программ…” В общем, тема для исследования фракталов просто огромнейшая.

Одно я могу сказать точно, мир гораздо разнообразнее и богаче, чем убогие представления нашего ума о нем.

Фрактальные морские животные

Мои догадки о фрактальных морских животных были не беспочвенны. Вот и первые представители. Осьминог - морское придонное животное из отряда головоногих.

Взглянув на его фотографию, мне стало очевидно фрактальное строение его тела и присосок на всех восьми щупальцах этого животного. Присосок на щупальцах взрослого осьминога достигает до 2000.

Интересен то факт, что у осьминога три сердца: одно (главное) гонит голубую кровь по всему телу, а два других -- жаберных -- проталкивают кровь через жабры. Некоторые виды этих глубоководных фракталов ядовиты.

Приспосабливаясь и маскируясь под окружающую среду, осьминог обладает весьма полезной способностью изменять окраску.

Осьминогов считают самыми «умными» среди всех беспозвоночных. Узнают людей, привыкают к тем, кто их кормит. Интересно было бы посмотреть на осьминогов, которые легко поддаются дрессировке, имеют хорошую память и даже различают геометрические фигуры. Но век этих фрактальных животных недолог - максимум 4 года.

Человек использует чернила этого живого фрактала и других головоногих. Они пользуются спросом у художников за их стойкость и красивый коричневый тон. В средиземноморской кухне осьминог является источником витаминов B3, B12, калия, фосфора и селена. Но я думаю, что этих морских фракталов нужно уметь готовить, чтобы получать удовольствие от их употребления в виде пищи.

Кстати, нужно заметить, что осьминоги - хищники. Своими фрактальными щупальцами они удерживают жертву в виде моллюсков, ракообразных и рыбы. Жаль, если пищей этих морских фракталов становится вот такой красивый моллюск. По-моему, тоже типичный представитель фракталов морского царства.

Также к примеру ,родственник улиток, брюхоногий голожаберный моллюск Главк, он же Глаукус, он же Glaucus atlanticus, он же Glaucilla marginata. Это фрактал еще и необычен тем, что живет и передвигается под поверхностью воды, удерживаясь за счет поверхностного натяжения. Т.к. моллюск является гермафродитом, то после спаривания оба "партнера" откладывают яйца. Этот фрактал встречается во всех океанах тропического пояса.

Фракталы морского царства

Каждый из нас хотя бы раз в жизни держал в руках и с неподдельным детским интересом рассматривал морскую раковину.

Обычно раковины являются красивым сувениром, напоминающим о поездке на море. Когда смотришь на это спиралевидное образование беспозвоночных моллюсков, нет никаких сомнений в его фрактальной природе.

Мы, люди, чем-то напоминаем этих мягкотелых моллюсков, обитая в благоустроенных бетонных домах-фракталах, помещая и перемещая свое тело в быстрых автомобилях.

Еще одни типичнейшим представителем фрактального подводного мира является коралл.

В природе известно свыше 3500 разновидностей кораллов, в палитре которых различают до 350 цветовых оттенков.

Коралл - это материал скелета колонии коралловых полипов, тоже из семейства беспозвоночных. Их огромные скопления образуют целые коралловые рифы, фрактальный способ образования которых очевиден.

Коралл с полной уверенностью можно назвать фракталом из морского царства.

Он также используется человеком в виде сувенира или сырья для ювелирных изделий и украшений. Но повторить красоту и совершенство фрактальной природы очень сложно.

Почему-то не сомневаюсь, что в подводном мире также отыщется и множество фрактальных животных.

Фракталы в народном творчестве

Мое внимание привлекла история всемирно известной игрушки «Матрешка». Присмотревшись внимательней, с уверенностью можно сказать, что эта игрушка-сувенир - типичный фрактал.

Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Мои небольшие исследования истории появления этого игрушечного фрактала на мировом рынке показали, что корни у этой красавицы - японские. Матрешка всегда считалась исконно русским сувениром. Но оказалось, что она прототип японской фигурки старика-мудреца Фукурума, привезенного когда-то в Москву из Японии.

Но именно российский игрушечный промысел принес этой японской фигурке мировую славу. Откуда возникла идея фрактальной вложенности игрушки, лично для меня, так и осталось загадкой. Скорей всего автор этой игрушки использовал принцип вложенности фигурок друг в друга. А самый простой способ вложения - это подобные фигурки разных размеров, а это уже - фрактал.

Не менее интересный объект исследования представляет собой роспись игрушки-фрактала. Это декоративная роспись - хохлома. Традиционные элементы хохломы - это травяные узоры из цветов, ягод и веток.

Снова все признаки фрактальности. Ведь один и тот же элемент можно повторять несколько раз в разных вариантах и пропорциях. В итоге получается народная фрактальная роспись.

И если новомодной росписью компьютерных мышек, крышек ноутбуков и телефонов никого уже не удивишь, то фрактальный тюнинг автомобиля в народном стиле - это что-то новое в автодизайне. Остается только удивляться проявлению мира фракталов в нашей жизни таким необычным образом в таких обычных для нас вещах.

Фракталы на кухне

Каждый раз, разбирая цветную капусту на небольшие соцветия для бланширования в кипящей воде, я ни разу не обращала внимания на явные признаки фрактальности, пока у меня в руках не оказался этот экземпляр.

Типичный представитель фрактала из растительного мира красовался на моем кухонном столе.

При всей моей любви к цветной капусте мне все время попадались экземпляры с однородной поверхностью без видимых признаков фрактальности, и даже большое число соцветий, вложенных друг в друга, не давали мне повода увидеть в этом полезном овоще фрактал.

Но поверхность именно этого экземпляра с явно выраженной фрактальной геометрией не оставляла ни малейшего сомнения во фрактальном происхождении этого вида капусты.

Очередной поход в гипермаркет только подтвердил фрактальный статус капусты. Среди огромного числа экзотических овощей красовался целый ящик с фракталами. Это была Романеску, или романская брокколи, цветная коралловая капуста.

Оказывается, дизайнеры и 3D-художники восторгаются ее экзотическими формами, похожими на фракталы.

Капустные почки нарастают по логарифмической спирали. Первые упоминания о капусте романеску пришли из Италии 16-го века.

А капуста броколли совсем не частая гостья в моем рационе, хотя по содержанию полезных веществ и микроэлементов она превосходит цветную капусту в разы. Но ее поверхность и форма настолько однородны, что мне никогда не приходило в голову увидеть в ней овощной фрактал.

Размещено на Allbest.ru

...

Подобные документы

  • Определение основных свойств выпуклых фигур. Описание традиционного решения изопериметрической задачи. Приведение примеров задач на поиск точек экстремума. Формулирование и доказательство теоремы о пятиугольнике наибольшего периметра единичного диаметра.

    дипломная работа [4,6 M], добавлен 30.03.2011

  • Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация [1001,7 K], добавлен 06.12.2011

  • Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа [1,9 M], добавлен 23.12.2015

  • Основные условия симметричности фигуры. Примеры геометрических фигур, обладающих центральной симметрией. Центральная симметрия плодов растений и некоторых цветов, живых существ. Центральная симметрия в транспорте. Анализ аксиом стереометрии и планиметрии.

    презентация [207,7 K], добавлен 30.10.2013

  • Особенности использования метода секущих плоскостей для создания проекции и разветки пересечения поверхностей фигур. Порядок построения изометрии взаимного пересечения поверхностей фигур. Характеристика процесса создания фигуры с вырезом, опоры и стойки.

    реферат [21,3 K], добавлен 27.07.2010

  • Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа [2,3 M], добавлен 24.06.2010

  • Основные виды симметрии (центральная и осевая). Прямая в качестве оси симметрии фигуры. Примеры фигур, обладающих осевой симметрией. Симметричность относительно точки. Точка как центр симметрии фигуры. Примеры фигур, обладающих центральной симметрией.

    презентация [2,7 M], добавлен 30.10.2014

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа [2,0 M], добавлен 29.01.2010

  • Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа [342,4 K], добавлен 26.05.2006

  • Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.

    курсовая работа [6,4 M], добавлен 13.08.2011

  • Использование геометрических форм и линий в практической деятельности человека. Геометрия у древних людей. Природные творения в виде геометрических фигур, их распространение в животном мире. Геометрические комбинации в архитектуре, сфере транспорта, быту.

    реферат [21,5 K], добавлен 06.09.2012

  • Определение правильного многогранника, его сторон, вершин, отрезков, соединяющих вершины. Анализ особенностей, геометрических свойств и видов правильных многогранников. Правильные многогранники, которые встречаются в живой природе и архитектуре.

    презентация [1,2 M], добавлен 13.11.2015

  • Разнообразие мира кристаллов - мира природных многогранников. Правильные многогранники (поваренная соль и сернистый колчедан) и просто многогранники (кварц, гранат, алмаз, исландский шпат). Вид простейшего Circogonia icosahedra - форма икосаэдр.

    презентация [2,3 M], добавлен 21.03.2009

  • Показатель надежности как числовая характеристика, с помощью которой можно количественно оценить надежность различных объектов техносферы. Общая характеристика свойств параметра потока отказов. Рассмотрение особенностей признака распределения Пуассона.

    презентация [97,7 K], добавлен 03.01.2014

  • Изучение свойств геометрических объектов при помощи алгебраических методов. Основные операции над векторами. Умножение вектора на отрицательное число. Скалярное произведение векторов. Нахождение угла между векторами. Нахождение координат вектора.

    контрольная работа [56,3 K], добавлен 03.12.2014

  • Рассмотрение различных примеров комбинаторных задач в математике. Описание способов перебора возможных вариантов. Использование комбинаторного правила умножения. Составление дерева вариантов. Перестановки, сочетания, размещения как простейшие комбинации.

    презентация [291,3 K], добавлен 17.10.2015

  • Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.

    презентация [6,5 M], добавлен 27.10.2013

  • Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.

    дипломная работа [359,1 K], добавлен 24.06.2011

  • Начальные геометрические сведения и формирования представлений учеников о понятиях точки, прямой, отрезка, треугольника, параллельных прямых, их расположение относительно друг друга. Задачи на вычисление геометрических величин и изображение фигур.

    презентация [222,5 K], добавлен 15.09.2010

  • Понятия целой и дробной частей действительного числа. Основные свойства функции и ее график. Применение свойств функции y = [x] при решении уравнений и геометрических задач. Описание реальных процессов непрерывными функциями. Решение задач на делимость.

    курсовая работа [487,7 K], добавлен 29.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.